

Bankverbindung: Saalesparkasse

BIC: NOLADE21HAL

St.-Nr.: 110/184/16966

IBAN: DE77 8005 3762 0387 0858 85

BERATEN I ERKUNDEN BAUGRUND I BERECHNEN ÜBERWACHEN I UNTERSUCHEN

Geotechnischer Bericht

über die Baugrund- und Gründungsverhältnisse für das

Bauvorhaben : Neubau interkommunaler Schulcampus Schulzendorf

Auftrags-Nr. : RK-006/04/24

gültig als : Voruntersuchung gem. EC 7-2, DIN EN 1997-1

Auftraggeber : Gemeinde Schulzendorf

Richard-Israel-Straße 1 15732 Schulzendorf

Ort / Datum : Halle (Saale), 16.08.2024

Bearbeiter : Ralf Klein

Dipl.-Ing. (FH)

Anmerkung: Der Bericht umfasst die Seiten 1 bis 24 und die auf Seite 3 aufgeführten Anlagen.

Inh	alts	verzeichnis	Seite			
Titel	blatt		. 1			
Inha	ltsver	zeichnis	. 2			
Unte	erlage	nverzeichnis	. 3			
Anla	genv	erzeichnis	. 3			
1.	Bau	vorhaben	. 4			
2.	Standortbeschreibung					
3.	Unte	ersuchungen	. 5			
	3.1	Lage, Art, Umfang und Zeitpunkt der Bodenaufschlüsse	. 5			
	3.2	Laboruntersuchungen	. 6			
4.	Untersuchungsergebnisse					
	4.1	Baugrundschichten und -beschreibung	. 7			
	4.2	Eigenschaften und Klassifizierung der Bodenschichten	. 10			
	4.3	Homogenbereiche (Vorabempfehlung)	. 11			
	4.4	Erdstatische (Vorab)Kennwerte	. 13			
	4.5	Grundwassermessdaten und -bemessungswerte, Versickerung	. 13			
5.	Ergebnisse der umweltrelevanten und chemischen Laboruntersuchungen					
	5.1	Ergebnisse der Laboruntersuchungen nach EBV	. 15			
	5.2	Betonaggressivität nach DIN 4030 und Stahlkorrosivität nach DIN 50929	. 18			
6.	Bau	grundbeurteilung	. 19			
	6.1	Allgemeine Baugrundeinschätzung	. 19			
	6.2	Unterkellerung und Abdichtung	. 20			
	6.3	Bemessungswerte Gründung	. 21			
	6.4	Böschungen und Baugruben	. 22			
	6.5	Wasserhaltung	. 23			
7.	Vors	schläge für weitere Untersuchungen und Messungen	. 23			

Projekt-Nr.: RK-006/04/24 16.08.2024 Seite 3 von 24

Bauvorhaben: Neubau interkommunaler Schulcampus Schulzendorf

Unterlagenverzeichnis

- [1] Angebot mit Leistungsbeschreibung vom 26.04.2024 (Angebots-Nr. RK-006/04/2024)
- [2] Auftragsschreiben vom 15.05.2024
- [3] Lageplan im M 1:500, erstellt am 13.06.2024 durch öffentlich bestellten Vermessungsingenieur Jänicke
- [4] Messergebnisse der Drucksondierungen übergeben von Geotechnik Heiligenstadt im Zeitraum Juni 2024
- [5] Koordinaten und Ansatzhöhen der Bohrpunkte, gemessen durch Baugrundbüro Klein GmbH vom 05.06.2024
- [6] Geoportal LBGR Brandenburg https://geo.brandenburg.de
- [7] Bohrpunktkarte https://geo.brandenburg.de/?page=Bohrpunktkarte und hydrgeologische Karten https://geo.brandenburg.de/?page=Hydrogeologische-Karten
- [8] Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) vom 09.07.2021
- [9] Ersatzbaustoffverordnung (Artikel 1 der Mantelverordnung BGBL 2021, Teil 1 Nr.43, vom 16.07.2021)
- [10] Gültige DIN-Normen sowie dem Stand der Technik entsprechende Merkblätter und Veröffentlichungen

Anlagenverzeichnis

1.1	Übersichtskarte, ohne Maßstab	1 Blatt
1.2.	Vereinfachter Lageplan der Sondierpunkte, 1:2500	1 Blatt
2	Zeichnerische Darstellung der Baugrundaufschlüsse inkl. Legende	10 Blatt
3.1	Drucksondierungen, Darstellung Spitzendruck, Mantelreibung,	
	Wichte und Steifemodul	9 Blatt
3.2	Drucksondierungen, Darstellung Elastizitätszahl, Reibungswinkel	
	und undränierte Scherfestigkeit	9 Blatt
3.3	zeichnerische Darstellung der Drucksondierungen von Geotechnik	
	Heiligenstadt GmbH	54 Blatt
4	Bodenphysikalische Laboruntersuchungen	82 Blatt
5	Prüfberichte CDR24-003201-1, CDR24-003202-1 und CDR24-003104-1	
	zur Untersuchung von Boden- und Wasserproben nach	
	DIN 4030 und 50929	15 Blatt

Projekt-Nr.: RK-006/04/24 16.08.2024 Seite 4 von 24

Bauvorhaben: Neubau interkommunaler Schulcampus Schulzendorf

6	Prüfbericht CDR24-03256-1 zur Untersuchung von Oberboden,	
	BBodSchV nach Mantelverordnung, Anhang 1 Tabelle 1+2 Vorsorgewerte	11 Blatt
7	Prüfbericht CDR24-003245-1 zur Bodenuntersuchung nach Ersatz-	
	baustoffverordnung (EBV) Anlage 1, Tabelle 3 inkl. Probenahmeprotokolle	18 Blatt
8	191-586 Hydrologische Stellungnahme für den Schulcampus	6 Blatt
9	Stellungnahme des Zentraldienstes der Polizei Brandenburg bzgl.	
	Kampfmittelverdachtsfläche	1 Blatt

1. Bauvorhaben

Auf der Untersuchungsfläche soll ein Schulcampus errichtet werden. Zum Zeitpunkt der Gutachtenerstellung lagen uns keine Angaben bzgl. geplanter Gebäudearten, Anzahl der Gebäude und Freiflächen sowie ggf. angedachte Unterkellerungen vor. Aus diesem Grund ist der vorliegende Bericht nur als Vorgutachten zu sehen und nach weiterer Planung in ein Hauptgutachten gem. EC 7-2: DIN EN 1997-1 zu überführen.

Das Vorgutachten beinhaltet eine Erstbewertung der Bohr- und Laborergebnisse, liefert charakteristische (Vorab)Kennwerte für erdstatische Berechnungen und Nachweise, Hinweise und Empfehlungen zur weiteren Planung und (Labor)Ergebnisse orientierender Untersuchungen potenziell anfallender Aushubböden nach BBodSchV [U8] und EBV [U9].

2. Standortbeschreibung

Der geplante Schulcampus befindet sich in der Ortschaft Schulzendorf. Der Untersuchungsstandort hat folgende Begrenzungen:

- östlich grenzt die K 6160 (Miersdorfer Straße)
- südlich grenzen landwirtschaftliche Flächen bzw. Brachland
- westlich ist der Mittenwalder Weg mit der Flutgrabenaue Waltersdorf
- und nördlich grenzen ein unbefestigter Weg und Privatgrundstücke an.

Das Gelände fällt prinzipiell von Ost nach West in Richtung Flutgrabenaue ein. Die Geländehöhen liegen ca. +36,6 m DHHN 2016 und +42,0 m DHHN 2016.

Nach der Stellungnahme des Zentraldienstes der Polizei Brandenburg (Anlage 9) ist nach derzeitigen Erkenntnissen nicht von einer Kampfmittelverdachtsfläche auszugehen.

Gemäß DIN EN 1998-1/NA:2011-01 liegt der Standort außerhalb von Erdbebenzonen und ist keiner Untergrundklasse zuzuordnen. Nachweise der Standsicherheit für den Lastfall Erdbeben sowie die Berücksichtigung von Zusatzkräften, resultierend aus Erdbebenbelastung, sind daher bei der Tragwerksdimensionierung nicht erforderlich.

3. Untersuchungen

3.1 Lage, Art, Umfang und Zeitpunkt der Bodenaufschlüsse

Zur Erkundung und Probenahme erfolgten am Untersuchungsstandort 9 Kleinrammbohrungen (BS) nach DIN EN ISO 22475-1. Des Weiteren wurden 9 Drucksondierungen (DS) nach DIN EN ISO 22476-1 niedergebracht. Die Lage der Aufschlussansatzpunkte ist aus der Anlage 1.2 ersichtlich.

Die Bohransatzpunkte wurden lage- und höhenmäßig eingemessen. Koordinaten, Ansatzhöhen und Endteufen sind in Tabelle 1 angegeben. Die Anlage 2 beinhaltet die zeichnerische Darstellung der direkten Aufschlüsse. In Anlage 3 sind die Ergebnisse der Drucksondierungen zusammengefasst. Die Aufschlüsse wurden im Zeitraum vom 04.06.2024 bis 05.06.2024 abgeteuft.

Tabelle 1: Lagekoordinaten, Ansatzhöhen [U5] und Endteufen der Baugrundaufschlüsse und Felduntersuchungen

Aufschluss	ETRS89		Ansatzordinate	Teufe
	Rechtswert	Hochwert	m DHHN 2016	[m unter GOK]
BS/CPT 1/24	402640.114	5801610.562	37,424	10,0 / 10,0
BS/CPT 2/24	402781.537	5801653.627	37.829	10,0 / 10,0
BS/CPT 3/24	402894.201	5801680.592	37.592	10,0 / 15,0
BS/CPT 4/24	402668.579	5801502.035	37.474	10,0 / 10,0
BS/CPT 5/24	402803.299	5801527.501	38.230	10,0 / 10,0

Projekt-Nr.: RK-006/04/24 16.08.2024 Seite 6 von 24

Bauvorhaben: Neubau interkommunaler Schulcampus Schulzendorf

Fortsetzung Tabelle 1...

BS/CPT 6/24	402929.452	5801562.328	37.492	10,0 / 11,0
BS/CPT 7/24	402694.005	5801384.931	37.705	10,0 / 10,0
BS/CPT 8/24	402841.744	5801414.981	38.984	10,0 / 10,0
BS/CPT 9/24	402958.427	5801429.629	40.454	10,0 / 10,0

Bohrprofile mit Schichtbeschreibungen, -zuordnungen, Wasseranschnitten und Probenentnahmen sind in Anlage 2 graphisch dargestellt. Das Bohrgut wurde nach DIN EN ISO 14688-1, 14688-2 und 14689-1 und 14689-2 geotechnisch aufgenommen, beschrieben und bautechnisch klassifiziert (vgl. Tabelle 7). Die graphische Darstellung und Auswertung der Drucksondierungen sind in Anlage 3 dargestellt.

3.2 Laboruntersuchungen

Zur Ermittlung bodenphysikalischer Kennwerte und bautechnischen Charakterisierung/ Klassifizierung der erkundeten Schichten erfolgten nachfolgend angegebene Laboruntersuchungen.

- 15 x Bestimmung der Korngrößenverteilung nach DIN EN ISO 17892-4
- 9 x Bestimmung der Sieb-/ Schlämmanalyse nach DIN EN ISO 17892-4
- 2 Bestimmung des Glühverlustes nach DIN EN ISO 17685-1, 2023-04

Die Prüfprotokolle sind in Anlage 4 zusammengefasst.

2 x Wasserproben und 1 x Bodenprobe wurden nach DIN 4030 (Betonaggressivität) und DIN 50 929 (Stahlkorrosivität) im Untersuchungsgebiet untersucht. Die nachfolgende Tabelle gibt Aufschluss über Entnahmeort und Probenbezeichnung. Die kompletten Prüfberichte mit zugehörigen Bewertungen sind der Anlage 5 zum vorliegenden Bericht zu entnehmen.

Tabelle 2: Umweltrelevante Untersuchungen an potenziellen Aushubböden

Probe	Aufschluss	Teufe [m]	Material	Untersuchungsumfang
WP 1	BS 3/24	~ 2,4	Grundwasser	Betonaggressivität DIN 4030
WP 2	BS 5/24	~ 2,6	Grundwasser	und Korrosionswahrscheinlichkeit
GP 4/3	BS 4/24	1,0 - 2,0	Boden	DIN 50929

Zur orientierenden Beurteilung anfallender Ausbaustoffe und -böden erfolgten an den in Tabelle 3 aufgeführten Bodenmischproben (MP) Laboruntersuchungen nach BBodSchV [U8] und EBV [U9]. Die Laborprüfberichte sind als Anlage 6 (MP 1 und MP 2) und Anlage 7 (MP 3 bis MP 5) Bestandteil des Berichtes.

Tabelle 3: Umweltrelevante Untersuchungen an potenziellen Aushubböden

Probe	Einzelprobe	Teufe [m]	Bodenmaterial	Untersuchungsumfang	
MP 1	BS 1/24 BS 2/24 BS 5/24	0,0 - 0,3	Oh ayb a dan	Untersuchung von Oberboden, BBodSchV nach	
MP 2	BS 4/24 BS 7/24 BS 8/24	0,0 - 0,3	Oberboden	Mantelverordnung, Anhang 1 Tabelle 1+2 mit pH-Wert und TOC	
MP 3	BS 1/24 BS 2/24 BS 3/24	0,3 - 1,0 0,3 - 0,8 0,2 - 1,0	sehr schwach	Anal tile nach	
MP 4	BS 4/24 BS 5/24 BS 6/24	0,3 - 1,0 1,0 - 2,0 1,0 - 2,0	schluffiger Sand bis stark schluffigen Sand	stark schluffigen Anla	Analytik nach Ersatzbaustoffverordnung Anlage 1, Tabelle 3 (alle
MP 5	BS 7/24 BS 8/24 BS 9/24	0,3 - 1,0 0,3 - 0,8 1,0 - 2,0		Parameter BM 0 bis BMF3)	

4. Untersuchungsergebnisse

4.1 Baugrundschichten und -beschreibung

Mit den Baugrundaufschlüssen wurden nachfolgende Schichten angetroffen.

Schicht 1 Oberboden

Der Oberboden besteht überwiegend aus Fein- bis Mittelsanden mit schluffigen, tonigen, humosen und schwach feinkiesigen Beimengungen sowie Wurzelresten. Die Farbgebung ist graubraun bis ockerbraun und der Oberboden weist eine lockere Lagerung auf. Die Schicht ist ca. 0,25 bis 0,35 m mächtig und wurde flächendeckend in den Aufschlüssen erkundet.

Projekt-Nr.: RK-006/04/24 16.08.2024 Seite 8 von 24

Bauvorhaben: Neubau interkommunaler Schulcampus Schulzendorf

Schicht 2a sehr schwach schluffige bis schwach schluffige Sande

Die überwiegend schwach schluffigen Fein- bis Mittelsande sind von der Farbgebung hellockerbraun. Die Lagerungsdichte ist locker bis max. mitteldicht. Die versickerungsfähigen Sande sind nicht an jedem Standort nachgewiesen. Des Weiteren ist von einer geringen Schichtmächtigkeit (< 1 m) auszugehen. Ausnahme bildet der Bereich um BS 7/24 mit einer Schichtmächtigkeit von ca. 2 m.

Schicht 2b+2c schluffige bis stark schluffige Sande

Die überwiegend schluffigen bis stark schluffigen Fein- bis Mittelsande sind von der Farbgebung ockerbraun. Als Nebenkorn können Grobsand und Feinkies auftreten. Die Schichtunterscheidung beruht allgemein auf der Lagerungsdichte bzw. Konsistenz. Die Schicht 2b weist Lagerungsdichten von locker bis max. mitteldicht bzw. Konsistenzen von weich bis steif aus. Die Schicht 2c zeichnet sich durch eine höhere Lagerungsdichte bzw. Konsistenz aus. Innerhalb der Schichtkomplexe sind die Korn- und Gemenganteile, insbesondere des Schluffgehaltes, sehr schwankend ausgebildet. Dadurch ist nur eine sehr eingeschränkte Versickerungsfähigkeit in den Schichtkomplexen 2b und 2c gegeben. Die Schichtmächtigkeiten und deren -unterkante schwanken sehr stark, teilweise im Bereich der BS 7/24 bei 2,2 m unter GOK und bei 7,5 m unter GOK im Bereich der BS 5/24.

Schicht 3

Die enggestuften Sande bestehen überwiegend aus Mittel- bis Grobsanden mit unbedeutenden schluffigen Beimengungen und vereinzelten Kieslagen. Mit zunehmender Teufe ist eine leichte Kornvergröberung zum schwach feinkiesigen Mittel- bis Grobsand erkennbar. Die Lagerungsdichte ist als mitteldicht bis sehr dicht einzuschätzen.

Die am Untersuchungsstandort erkundete Baugrundschichtung ist in den Baugrundprofilen (Anlage 2) graphisch dargestellt. Die Lagerungsdichte wurde anhand der Drucksondierergebnisse (Anlage 3) beurteilt. Die aus baugrundtechnischer Sicht zur allgemeinen Bemessung anzusetzende Baugrundschichtung ist in den Tabellen 4 bis 6 angegeben.

Projekt-Nr.: RK-006/04/24 16.08.2024 Seite 9 von 24

Bauvorhaben: Neubau interkommunaler Schulcampus Schulzendorf

Tabelle 4: allgemeines Schichtenmodell Aufschlüsse BS 1/24 bis BS 3/24

	Schicht -Nr.	Schichtunterkante	
Schichtenabfolge		m unter GOK	m DHHN2016
		BS 2/23	
Oberboden	1	0,3	37,53
Sand, schwach schluffig	2a	0,8	37,03
Sand, stark schluffig	2b	2,0	35,83
Sand, stark schluffig	2c	4,5	33,33
enggestufter Sand	3	10,0	27,83

Tabelle 5: allgemeines Schichtenmodell Aufschlüsse BS 4/24 bis BS 6/24

	Schicht -Nr.	Schichtunterkante	
Schichtenabfolge		m unter GOK	m DHHN2016
	· · · · ·		5/23
Oberboden	1	0,3	37,93
Sand, schwach schluffig	2a	1,0	37,23
Sand, stark schluffig	2b	5,0	33,23
Sand, stark schluffig	2c	7,5	30,73
enggestufter Sand	3	10,0	28,23

Tabelle 6: allgemeines Schichtenmodell Aufschlüsse BS 7/24 bis BS 9/24

	Schicht -Nr.	Schichtunterkante		
Schichtenabfolge		m unter GOK	m DHHN2016	
		BS 8/23		
Oberboden	1	0,3	38,68	
Sand, schwach schluffig	2a	-	-	
Sand, stark schluffig	2b	3,5	35,48	
Sand, stark schluffig	2c	6,0	32,98	
enggestufter Sand	3	10,0	28,98	

Von den geologischen und hydrogeologischen Verhältnissen und dem angegebenen Bauvorhaben ausgehend, wird aus baugrundtechnischer Sicht vorerst die **geotechnische Kategorie 2** nach EC-7 festgelegt. Im Zuge der weiteren Planung und mit fortschreitendem Kenntnisstand ist ggf. eine Anpassung der Kategorie vorzunehmen.

Projekt-Nr.: RK-006/04/24 16.08.2024 Seite 10 von 24

Bauvorhaben: Neubau interkommunaler Schulcampus Schulzendorf

4.2 Eigenschaften und Klassifizierung der Bodenschichten

Die erkundeten Böden/Schichten sind nach Feldbefund, Laborergebnissen und Feldmessungen bautechnisch zu klassifizieren und zu beurteilen.

Tabelle 7: Bautechnische Klassifizierung und Beurteilung der Schichten

Schicht	Oberboden	Sand, schwach schluffig	Sand, stark schluffig	Sand, enggestuft
Schicht	1	2a	2b + 2c	3
Bodengruppe DIN 18196	OU, SU, SU*	SE, SU, SU*	SU, SU*	SE, SU, SW
Lagerungsdichte	locker	locker bis mitteldicht	locker bis mitteldicht	mitteldicht bis sehr dicht
Konsistenz 1)	-	-	weich bis halbfest	-
Zusammendrückbarkeit	groß	mittel	mittel bis gering	vernach- lässigbar klein
Verdichtungsfähigkeit	schlecht	mittel	mittel	gut bis mittel
Frostempfindlichkeit	F 3	F 2 (F 1)	F 3 (F 2)	F 1 (F 2)
Wasserdurchlässigkeit	mittel	groß bis mittel	gering - mittel	sehr groß bis mittel
Bemerkungen/ Besonderheiten	Ackerfläche bzw. Brachland	geringmächtig und lokal auftretend, unterliegt dem Aushub	hauptsächlicher Gründungs- horizont	überwiegend enggestuft, schwankende Korn- und Gemenganteile innerhalb des Schichtkom- plexes
Verwendung als:				
Gründungen	-	±/+	±	+
Dammbaustoff	-	±/+	±	+
Hinterfüllung	-	±/+	±/-	+
Drainagen	-	±/+	±/-	+

¹⁾ abhängig von Durchfeuchtung

⁺ geeignet; ± bedingt geeignet; - ungeeignet

4.3 Homogenbereiche (Vorabempfehlung)

Mit Einführung der DIN 18300: 2015-08 wurden die in den Tiefbaunormen der VOB Teil C enthaltenen Bodenklassen durch Homogenbereiche abgelöst. Ein Homogenbereich schließt eine oder mehrere Bodenschichten zusammen, die bezogen auf das jeweilige Gewerk vergleichbare Leistungsaufwendungen für das Lösen, Laden und Transportieren oder wie bei den Bohrarbeiten ähnliche Verschleißwerte erwarten lassen. Die Tabelle 8 beinhaltet eine Empfehlung zur Zusammenfassung der Boden-/Baugrundschichten zu Homogenbereichen. Abschließende Festlegungen sind bei der weiteren Planung und darauf basierend die Ausführungsplanung mit Berücksichtigung der auszuschreibenden Erd-/Tiefbautechnologie vorzunehmen.

Oberbodenarbeiten sind nicht Bestandteil der DIN 18300. Der vorhandene Oberboden ist gesondert abzulagern.

Tabelle 8: Empfehlung zur Zusammenfassung der Schichten zu Homogenbereichen

Schicht Nr.	Bezeichnung	Bodenklasse DIN 18300 (alt)	Homogenbereich Erdarbeiten (EA)	Homogenbereich Ramm-, Rüttel- und Pressarbeiten (RRP)
1	Oberboden 1)	3 (1)	-	-
2a	Sand, schwach schluffig 1)	3	EA-1	RRP 1
2b + 2c	Sand, stark schluffig	3 (4)	EA-1	RRP-1
3	Sand, enggestuft	3	EA-2	RRP-2

¹⁾ unterliegen dem Aushub

Tabelle 9: Kennwerte - Erdarbeiten

Bezeichnung im Bericht	Schicht 2a	Schicht 2b + 2c	Schicht 3	
(ortsübliche) Bezeichnung	Sand, schwach schluffig	Sand, schluffig bis stark schluffig	Sand, enggestuft	
Homogenbereich	E.	EA-1		
Bodengruppen nach DIN 18196	SE, SU, SU*	SU, SU*	SE, SU, SW	
%-Feinkornanteil (< 0,063 mm)	315 °)		Anlage 4	
%-Sandanteil (> 0,063 - 2 mm)	4080 ^{c)}	Bestimmung der Korngrößenverteilung		
%-Kiesanteil (> 2 - 63 mm)	010 °)		ŭ	

Projekt-Nr.: RK-006/04/24 16.08.2024 Seite 12 von 24

Bauvorhaben: Neubau interkommunaler Schulcampus Schulzendorf

Fortsetzung Tabelle 9...

Stein- und Blockanteile DIN 14688-1 [%] c)	<	< 5	
organischer Anteil DIN 18128 [%] c)	< 2	< 2	< 1
Wichte im erdfeuchten Zustand DIN 18125-1 / -2 [kN/m²] b, c)	18 - 21		18 - 22
Kohäsion (cʻ) gem. DIN 18137 [kN/m²]	0	0 b, c)	
Wasserdurchlässigkeit k _f DIN 18130 [m/s]	10 ⁻⁴ - 10 ⁻⁶ c) 10 ⁻⁵ - 10 ⁻⁸ a, c)		10 ⁻⁴ - 10 ⁻⁵ a, c)
Lagerungsdichte D DIN 14688-2 [-]	0,150,50 b, c)		0,35>0,85 b)
Sondierwiderstände 1)	315	(25) b)	10>25 b)

 $^{^{\}rm a)}$ Laborversuch $^{\rm b)}$ Feldversuch $^{\rm c)}$ Erfahrungswert $\,$ - nichtzutreffend

Tabelle 10: Kennwerte – Ramm, Rüttel- und Pressarbeiten (RRP)

Bezeichnung im Bericht	Schicht 2a	Schicht 2b+2c	Schicht 3
(ortsübliche) Bezeichnung	Sand, schwach schluffig	Sand, schluffig bis stark schluffig	Sand, enggestuft
Homogenbereich	RR	P-1	RRP-2
Bodengruppen nach DIN 18196	SE, SU, SU*	SU, SU*	SE, SU, SW
%-Feinkornanteil (< 0,063 mm)	315 c)		Anlage 4
%-Sandanteil (> 0,063 - 2 mm)	4080 c)		nung der nverteilung
%-Kiesanteil (> 2 - 63 mm)	010 c)		
Stein- und Blockanteile DIN 14688-1 [%] c)	< 5		< 5
organischer Anteil DIN 18128 [%] c)	< 2	< 2	< 1
Wichte im erdfeuchten Zustand DIN 18125-1 / -2 [kN/m²] b, c)	18 - 21		18 - 22
Kohäsion (cʻ) gem. DIN 18137 [kN/m²]	0	b, c)	O b, c)
Wasserdurchlässigkeit k _f DIN 18130 [m/s]	10 ⁻⁴ - 10 ^{-6 c)}	10 ⁻⁵ - 10 ⁻⁷ a, c)	10 ⁻⁴ - 10 ⁻⁵ a, c)
Lagerungsdichte D DIN 14688-2 [-]	*	0,50 b,c)	0,35>0,85 b)
	locker bis mitteldicht		mitteldicht bis sehr dicht
Sondierwiderstände 1)	315 (25) ^{b)}		10>25 b)
Rammbarkeit b, c), 2)	mittel bis (schwer)		sehr schwer
Rüttelbarkeit b, c), 2)	bedingt geeignet		bedingt geeignet bis nicht geeignet
Einpressbarkeit b, c), 2)	bedingt geeignet l	ois (nicht geeignet)	nicht geeignet

^{a)} Laborversuch ^{b)} Feldversuch ^{c)} Erfahrungswert

¹⁾ Spitzendruck (MN/m²) laut Drucksondierungen

¹⁾ Spitzendruck (MN/m²) laut Drucksondierungen

²⁾ (Vorab)Einschätzung allgemein für den Standort

Projekt-Nr.: RK-006/04/24 16.08.2024 Seite 13 von 24

Bauvorhaben: Neubau interkommunaler Schulcampus Schulzendorf

4.4 Erdstatische (Vorab)Kennwerte

Für erdstatische (Vorab)Berechnungen und (Vorab)Nachweise sind die in Tabelle 11 angegebenen, charakteristischen Berechnungswerte anzusetzen. Bei der Festlegung wurden den Ergebnissen der Felduntersuchungen, die Feldbefunde und Laborergebnisse sowie Erfahrungswerte berücksichtigt.

Tabelle 11: erdstatische (Vorab)Kennwerte

			Schicht 2a	Schicht 2b	Schicht 2c	Schicht 3
Kennwerte		Sand, schwach schluffig	Sand, schluffig bis stark schluffig		Sand, enggestuft	
Wichte	γk	[kN/m³]	18	18 18 20	18 19 21	18 21 22
Wichte unter Auftrieb	γ'	[kN/m³]	9	8 9 10	8 10 12	10 12 14
Reibungswinkel	ϕ_{k}	[°]	25 27 30	25 28 30	27 31 35	30 35 37
Kohäsion	C _k '	[kN/m²]	0	0	0	0
undränierte Scherfestigkeit	C _{u,k}	[kN/m²]	0	0	0	0
Steifemodul	E _{s,k}	[MN/m²]	10 30 50	10 20 30	20 40 80	40 80 100

Bei allgemeinen (Vorab)Berechnungen und (Vorab)Nachweisen ist der jeweils fettgedruckte Berechnungs- bzw. Einzelwert anzusetzen. Für detaillierte Berechnungen/ Nachweise an einzelnen Standorten im Untersuchungsgebiet sind die ermittelten Kennwerte aus den Diagrammen der Drucksondierungen (siehe Anlage 3.1 bis 3.3) unter Berücksichtigung der Schichtgrenzen (Anlage 2) maßgebend. Im Untersuchungsgebiet anzusetzende Ordinaten für die einzelnen Standorte sind in Tabelle 1 angegeben.

4.5 Grundwassermessdaten und -bemessungswerte, Versickerung

Im Erkundungszeitraum vom 04.06.2024 bis 05.06.2024 wurden die in Tabelle 12 angegebenen Grundwasserstände ermittelt. Es wird darauf hingewiesen, dass es sich bei ermittelten Wasserständen um kurzzeitige und nicht um (Höchst)Grundwasserstände handelt.

Projekt-Nr.: RK-006/04/24 16.08.2024 Seite 14 von 24

Bauvorhaben: Neubau interkommunaler Schulcampus Schulzendorf

Tabelle 12: Grundwasserstände zum Zeitpunkt der Erkundungsarbeiten

Aufschluss	Ansatzhöhe	Wasseranschnitt		Wasserstand (Bohrende)			
raioomaoo	[m DHHN16]	[m u. GOK]	[m DHHN16]	[m u. GOK]	[m DHHN16]	Datum	
BS 1/24	37,42	2,55	34,87	2,40	35,02	04.06.2024	
BS 2/24	37,83	2,40	35,43	2,30	35,33	04.06.2024	
BS 3/24	37,49	2,40	35,09	2,36	35,13	04.06.2024	
BS 4/24	37,47	3,10	34,37	2,50	34,97	04.06.2024	
BS 5/24	38,23	2,60	35,63	2,50	35,73	04.06.2024	
BS 6/24	37,49	2,40	35,09	2,30	35,19	04.06.2024	
BS 7/24	37,70	2,20	35,50	2,15	35,55	05.06.2024	
BS 8/24	38,98	3,75	35,23	3,40	35,58	05.06.2024	
BS 9/24	40,45	4,60	35,85	4,50	35,95	05.06.2024	

Hinsichtlich Langzeitmessdaten zum Grundwassergang bzw. zu erwartender Höchstgrundwasserständen liegen dem Land Brandenburg keine Angaben vor (Anlage 8). Unter Berücksichtigung des derzeitigen Kenntnisstandes, auf Basis der vorliegenden Unterlagen [U7] und der Aufschlussergebnisse kann für den Erkundungsbereich vorerst von folgenden mittleren Grundwasserstand (MGW) und Bemessungswasserstand HGW₁₀₀ ausgegangen werden.

MGW +36,0 m DHHN2016

HGW₁₀₀ +37,0 m DHHN2016

Die o. g. Wasserstände sind im Zuge der weiteren Planung unter Berücksichtigung weiterer Bodenaufschlüsse und ggf. behördlicher Stellungnahmen zu konkretisieren.

Der Standort ist nach [U7] nicht als Überschwemmungsgebiet ausgewiesen. Aufgrund der unmittelbaren Nähe zu den westlich angrenzenden Entwässerungsgräben der Flutgrabenaue und dem geringen Höhenunterschied zum Graben sollte die Möglichkeit eines Hochwasserereignisses zumindest im westlichen Teil des Untersuchungsgebietes ungeachtet der Größe der Vorflut von planerischer Seite beachtet werden.

Nach DWA-A 138 sind zur Versickerung durchlässige Böden im Rahmen einer kf-Werte-Spanne von kf = 10^{-3} ... 10^{-6} m/s und einer Mächtigkeit des Sickerraums (Abstand Versickerungsebene und dem mittleren höchsten Grundwasserspiegel) ≥ 1 m geeignet.

Aus den Voruntersuchungen (siehe Sieblinienuntersuchungen - Anlage 4) werden nachfolgende prinzipielle Eignungen - unter dem anzusetzenden Korrekturfaktor von 0,2 nach DWA-A 138 - zur Versickerung vorerst bestimmt.

schwach schluffige Sande (Schicht 2a)

k_f-Wert 10⁻⁴ - 10⁻⁶ m/s durchlässig - geeignet

schluffige bis stark schluffige Sande (Schicht 2b+ 2c)

k_f-Wert 10⁻⁵ - 10⁻⁸ m/s durchlässig bis (sehr) schwach durchlässig - <u>bedingt bis nicht geeignet</u> enggestufte Sande (Schicht 3)

k_f-Wert 10⁻⁴ - 10⁻⁵ m/s durchlässig - geeignet

Im Untersuchungsstandort insbesondere im Bereich der Schichten 2b und 2c sind auf kürzester Entfernung sehr stark schwankende Durchlässigkeiten bei der Voruntersuchung ermittelt wurden. Unter Berücksichtigung der vorliegenden Ergebnisse empfehlen wir daher im Zuge der weiteren Planung Versickerungsstandorte festzulegen und an diesen Stellen übliche Verfahren zur Ermittlung des kf-Wertes (u.a. Aufschlüsse, Pumpversuche, Versickerungsversuche, labortechnische Ermittlung an ungestörten Bodenproben, Ableitung aus der Korngrößenverteilung etc.) vorzunehmen.

5. Ergebnisse der umweltrelevanten und chemischen Laboruntersuchungen

An Proben potenziell anfallender Aushubböden erfolgten Laboruntersuchungen nach den Vorgaben der BBodSchV [U8] und Ersatzbaustoffverordnung [U9]

5.1 Ergebnisse der Laboruntersuchungen nach BBodSchV und EBV

Die Ergebnisse der Laboruntersuchungen nach BBodSchV [U8] Anlage 1, Tabelle 1 und 2 sind den Tabellen 13 und 14 zu entnehmen. Der komplette Prüfbericht ist als Anlage 6 dem Bericht beigefügt.

Projekt-Nr.: RK-006/04/24 16.08.2024 Seite 16 von 24

Bauvorhaben: Neubau interkommunaler Schulcampus Schulzendorf

Tabelle 13: Vorsorgewerte für anorganische Stoffe nach BBodSchV, Anlage 1, Tab.1

Parameter	Dimen- sion	Vorsorgewert für anorganische Stoffe - Sand	MP 1	MP 2	eingehalten ja / nein
ph-Wert			6,3	5,9	ja
Arsen	mg/kg	10	< 3	< 3	ja
Blei	mg/kg	40	14	15	ja
Cadmium	mg/kg	0,4	< 0,1	0,12	ja
Chrom, gesamt	mg/kg	30	6,5	7,2	ja
Kupfer	mg/kg	20	5,7	6,7	ja
Nickel	mg/kg	15	< 5	< 5	ja
Quecksilber	mg/kg	0,2	< 0,1	< 0,1	ja
Thallium	mg/kg	0,5	< 0,1	< 0,1	ja
Zink	mg/kg	60	24	25	ja

Tabelle 14: Vorsorgewerte für organische Stoffe nach BBodSchV (n.F.), Anl. 1, Tab. 2

	Vorsorgewert	Analyser		
Stoff	bei TOC ≤ 4 %	Oberboden MP 1	Oberboden MP 2	eingehalten ja / nein
		[mg/kg TM]		
TOC	≤ 4	0,85	0,83	ja
Benzo(a)pyren	0,3	0,03	< 0,02	ja
PAK16	3	0,22	0,12	ja
Summe aus PCB6 und PCB-118	0,05	< 0,011	< 0,011	ja

Nach den orientierenden Untersuchungen sind die Vorsorgewerte für anorganische und organische Stoffe für den untersuchten Oberboden (Schicht 1) eingehalten. Entsprechend sind bei der Wiederaufbringung / Einbringung des im Vorfeld der Baumaßnahme abgeschobenen Bodens keine schädlichen Bodenveränderungen durch Schadstoffeinträge zu besorgen. Der Oberboden ist gesondert abzuschieben und nur für Oberbodenandeckung wiederverwendbar.

Auszüge und Gegenüberstellung der Laborergebnisse sind nach EBV in Tabelle 15 enthalten. Die Anlage 7 beinhaltet die kompletten Analyseergebnisse. Die Zuordnung der Aushubböden in Materialklassen nach EBV Anlage 1, Tabelle 3 ist der Tabelle 16 zu entnehmen.

Projekt-Nr.: RK-006/04/24 16.08.2024 Seite 17 von 24

Bauvorhaben: Neubau interkommunaler Schulcampus Schulzendorf

Tabelle 15: Gegenüberstellung Laborergebnisse / EBV

Dim.	BM-0 BG-0 Sand	BM-0* BG-0*	MP 1	MP 2	MP 3	eingehalten ja / nein
			7,3	7,6	7,5	
μS/cm		350	78	144	160	ja
mg/l	250	250	< 10	< 10	< 10	ja
mg/kg	10	20	3,7	4,5	< 3	ja
μg/l		8 (13)	4,1	< 3	< 3	ja
mg/kg	40	140	5,6	5,9	5,4	ja
μg/l		23 (43)	< 5	< 5	< 5	ja
mg/kg	0,4	1	< 0,1	0,21	0,13	ja
μg/l		2 (4)	< 0,5	< 0,5	< 0,5	ja
mg/kg	30	120	7,1	16	12	ja
μg/l		10 (19)	< 3	< 3	< 3	ja
mg/kg	20	80	5,0	9,3	6,4	ja
μg/l		20 (41)	8,1	< 5	< 5	ja
mg/kg	15	100	6,1	12	9,2	ja
μg/l		20 (31)	< 5	< 5	< 5	ja
mg/kg	0,2	0,6	< 0,05	< 0,05	< 0,05	ja
μg/l		0,1	< 0,05	< 0,05	< 0,05	ja
mg/kg	0,5	1,0	< 0,1	< 0,1	< 0,1	ja
μg/l		0,2 (0,3)	< 0,2	< 0,2	< 0,2	ja
mg/kg	60	300	< 20	27	< 20	ja
μg/l		100 (210)	< 30	< 30	< 30	ja
%	1	1	0,13	0,11	0,13	ja
mg/kg		300 (600)	< 32	< 33	< 32	ja
mg/kg		300 (600)	- 32	- 33	- 32	ja
ma/ka	0.3	300 (000)				ja ja
	0,3	0.2				ja ja
	3					ja ja
	3					ja ja
	mg/l mg/kg µg/l mg/kg	#\$\textstyre{\mathbb{G}} \textstyre{\mathbb{G}} \mathbb{	Sand	Sand 7,3 7,3 7,8 mg/l 250 250 250 210 20 3,7 μg/l 8 (13) 4,1 mg/kg 40 140 5,6 μg/l 23 (43) < 5 mg/kg 30 120 7,1 μg/l 10 (19) < 3 mg/kg 20 80 5,0 μg/l 20 (41) 8,1 mg/kg 15 100 6,1 μg/l 20 (31) < 5 mg/kg 0,2 0,6 < 0,05 μg/l 0,1 < 0,05 mg/kg 0,2 0,6 < 0,05 μg/l 0,1 < 0,05 mg/kg 0,2 0,6 < 0,05 μg/l 0,1 < 0,05 mg/kg 0,5 1,0 < 0,1 μg/l 0,2 0,5 mg/kg 60 300 < 20 μg/l 100 (210) < 30 % 1 1 0,13 mg/kg 300 (600) < 32 mg/kg 0,3	Sand 7,3 7,6 144 mg/l 250 250 < 10 < 10 mg/kg 10 20 3,7 4,5 μg/l 8 (13) 4,1 < 3 mg/kg 40 140 5,6 5,9 μg/l 23 (43) < 5 < 5 mg/kg 30 120 7,1 16 μg/l 20 (41) 8,1 < 5 mg/kg 40 10 (19) < 3 < 3 mg/kg 30 120 7,1 16 μg/l 20 (41) 8,1 < 5 mg/kg 15 100 6,1 12 μg/l 20 (31) < 5 < 5 mg/kg 0,2 0,6 < 0,05 < 0,05 μg/l 20 (31) < 5 < 5 mg/kg 0,2 0,6 < 0,05 < 0,05 μg/l 0,1 < 0,05 < 0,05 μg/l 0,2 0,6 < 0,05 < 0,05 μg/l 0,2 0,6 < 0,05 < 0,05 μg/l 0,2 0,01 < 0,1 < 0,1 μg/l 0,2 0,3 < 0,2 < 0,2 μg/l 100 (210) < 30 < 30 × 30	Sand Sand

Projekt-Nr.: RK-006/04/24 16.08.2024 Seite 18 von 24

Bauvorhaben: Neubau interkommunaler Schulcampus Schulzendorf

Tabelle 16: Zuordnung nach EBV, Anhang 1, Tabelle 3

Bodenmaterial	Aufschlüsse	Teufe [m]	Schicht	als MP untersucht	Bodenmaterial- Klasse
	BS 1/24 BS 2/24 BS 3/24	0,3 - 1,0 0,3 - 0,8 0,2 - 1,0	2a und 2b	MP 3	BM-0
sehr schwach schluffiger Sand bis stark schluffigen Sand	BS 4/24 BS 5/24 BS 6/24	0,3 - 1,0 1,0 - 2,0 1,0 - 2,0	2a und 2b	MP 4	BM-0
	BS 7/24 BS 8/24 BS 9/24	0,3 - 1,0 0,3 - 0,8 1,0 - 2,0	2a und 2b	MP 5	BM-0

Die schluffigen Sande (Schichten 2a/2b) sind vorbehaltlich der bautechnischen Eignung (die jeweils durch Eignungsuntersuchungen nachzuweisen sind) prinzipiell aus umweltrelevanter Sicht gemäß EBV wiedereinbaufähig. Die Einbauweisen für Bodenmaterial der Klasse 0 sind in der EBV, Anlage 2, Tabelle 5 geregelt.

Bei Abgabe an Dritte sind die anfallenden Böden und Bodengemische je nach vorgesehener Verwendung / Verwertung / abfalltechnischen Entsorgung getrennt zu lagern, zu beproben und zu untersuchen (u. a. nach den Vorgaben der Mantelverordnung vom 16.07.2021 und/oder den Eingangsparametern in Frage kommender Deponien) und dementsprechend zu klassifizieren. Für erforderliche, weitere und ggf. für bauzeitliche Probenahmen und Laboruntersuchungen sind entsprechende Leistungspositionen und Zeitfenster einzukalkulieren.

5.2 Betonaggressivität nach DIN 4030 und Stahlkorrosivität nach DIN 50929

Am Standort wurden 2 Wasserproben und 1 Bodenprobe aus dem potenziellen Gründungsbereich nach DIN 4030 und DIN 50929-3 auf betonaggressive und stahlkorrosive Inhaltsstoffe untersucht. Der vollständige Prüfbericht ist als Anlage 5 dem Bericht beigefügt. Die Ergebnisse der Laboranalysen sind in Tabelle 17 und Tabelle 18 angegeben.

Projekt-Nr.: RK-006/04/24 16.08.2024 Seite 19 von 24

Bauvorhaben: Neubau interkommunaler Schulcampus Schulzendorf

Tabelle 17: Betonaggressivität und Stahlkorrosivität Wasser

	Betonaggressivität	Stahlkorrosivität (DIN 50 929)				
	Angriffsgrad	Wasser/Luft- Grenze		Unterwasser		Deckschichtgüte auf
Probe	(DIN 4030)	Flächen- korrosion	Mulden-/ Loch- korrosion	Flächen- korrosion	Mulden-/ Loch- korrosion	feuerverzinkten Stählen
WP 1 BS 3/24	nicht	sehr gering		sehr gering		sehr gut
WP 2 BS 5/24	nicht	sehr gering		sehr gering		sehr gut

Tabelle 18: Betonaggressivität und Stahlkorrosivität Boden

Probe	Betonaggressivität	Stahlkorrosivität nach DIN 50929			
Aufschluss	nach DIN 4030	Mulden- und Lochkorrosion	Flächen- korrosion	Bodenklasse	
GP 4/3 BS 4/24	nicht betonangreifend	sehr gering	sehr gering	la	

Die Expositionsklassen für erdeingebundene Betonbauteile - unter Berücksichtigung der oberflächennahen Grundwasserstände - sind vom Planer nach Tabelle 1 des DIN-Fachberichtes 100 festzulegen.

6. Baugrundbeurteilung

6.1 Allgemeine Baugrundeinschätzung

Die allgemeine Baugrundsituation ist in den Bohrprofilen (Anlage 2) graphisch dargestellt. Zum Zeitpunkt der Bearbeitung lagen uns keine Informationen bzgl. der geplanten Bebauung vor. Nachfolgende Aussagen sind als Vorabinformationen zu verstehen und im Zuge der weiteren Planung zu konkretisieren.

Auffüllungen aller Art (nicht angetroffen), Oberboden (Schicht 1) sowie aufgeweichte schluffige Sande (Schicht 2b) sind als nicht tragfähig einzuschätzen, mit den Fundamenten vollständig zu durchfahren oder aus dem Gründungsbereich vollständig zu entfernen und durch gut verdichtungsfähige Polsterbaustoffe zu ersetzen. Als Gründungsunterlage sind die mindestens mitteldicht gelagerten schluffigen Sande der Schichten 2a bis c oder die enggestuften Sande (Schicht 3) zu erschließen.

Die frostsichere Einbindetiefe beträgt ≥ 1,0 m unter umliegender und endgültiger GOK und ist planerisch und ausführungsseitig sicherzustellen.

Von den geologischen und hydrogeologischen Verhältnissen und dem angegebenen Bauvorhaben ausgehend, wird aus baugrundtechnischer Sicht vorerst die **geotechnische Kategorie** 2 nach EC-7 festgelegt.

6.2 Unterkellerung und Abdichtung

Zum Zeitpunkt der Feldarbeiten (06/2024) wurde ab ca. 2,15 m unter derzeitiger GOK Grundwasser angetroffen. Die ermittelten Wasserstände sind keine Höchstgrundwasserstände. Unter Berücksichtigung der unmittelbaren Nähe zur Flutgrabenaue Waltersdorf mit seinen weitverzweigten Entwässerungsgräben ist davon auszugehen, dass die Wasserstände miteinander in Verbindung stehen. Saison- und niederschlagsabhängig ist mit Grundwasserschwankungen, Staunässebildungen sowie teufenunabhängigen Sicker-/Schichtwasserzutritten zu rechnen.

Die Abdichtungsbauart der Bodenplatte ist in Abhängigkeit der Höhenanbindung, d. h. des Abstandes zum Bemessungswasserstand unter Beachtung der Vorgaben der DIN 18533-1 von planerischer Seite festzulegen.

Hierzu ist planungsseitig Folgendes zu beachten: Unter Berücksichtigung der Erkundungsergebnisse wird baugrundseitig der abdichtungsrelevante Bemessungswasserstand (BWS) vorerst auf derzeitiges GOK-Niveau festgelegt.

Bei einer Gründung der Fundamentplatten auf einem frostunempfindlichen Gründungspolster, welches aus stark wasserdurchlässige Polsterbaustoffe (kf-Wert > 10-4 m/s) hergestellt wird sowie bei Einhaltung des Abstandes von ≥ 0,5 m zwischen unterster Abdichtungsebene (UK Bodenplatte) und BWS, kann die Wassereinwirkungsklasse W1.1-E (Bodenfeuchte und nicht drückendes Wasser) angesetzt werden.

Wird dieser Abstand unterschritten bzw. bei erdberührter Bauweise ist entsprechend der DIN 18533 die Wassereinwirkungsklasse W2.1-E (drückendes Wasser bis ≤ 3 m Eintauchtiefe) zur fachgerechten Abdichtung der Bodenplatte planungsseitig zu beachten und eine DIN-konforme Abdichtung (Platte, aufgehende Wände und Sockelbereich) gemäß Tabelle 1 und Punkt 8.6 der DIN 18533-1 (2017-07) festzulegen.

6.3 Bemessungswerte Gründung

Für allgemein erdstatische Berechnungen und Nachweise sind die in der Tabelle 11 <u>fett</u> <u>gedruckten</u>, charakteristischen Berechnungswerte anzusetzen. Für detaillierte Berechnungen/ Nachweise, u.a. an einzelnen Gebäuden sind die ermittelten Kennwerte aus den Diagrammen der Drucksondierungen (Anlage 3.1 bis 3.3) - unter Berücksichtigung der Tiefenlage (siehe Anlage 2) - maßgebend.

Tabelle 19: Bemessungswerte des Sohlwiderstandes $\sigma_{R,d}$ für Streifenfundamente auf gemischtkörnigem Boden - schluffige bis stark schluffige Sande (Schichten 2b und 2c) mit Breiten b bzw. b' von 0,5 m...2,0 m

Kleinste Einbindetiefe des	Bemessungswerte des Sohlwiderstandes σR ,d in kN/m²			
Fundaments in m	steif	halbfest / mitteldicht		
0,5	210	310		
1,0	250	390		
1,5	310	460		
2,0	350	520		

ACHTUNG -- Die angegebenen Werte sind Bemessungswerte des Sohlwiderstands, keine aufnehmbaren Sohldrücke nach DIN 1054:2005-01 und keine zulässigen Bodenpressungen nach DIN 1054:1976-11.

Projekt-Nr.: RK-006/04/24 16.08.2024 Seite 22 von 24

Bauvorhaben: Neubau interkommunaler Schulcampus Schulzendorf

Tabelle 20: Bemessungswerte des Sohlwiderstandes $\sigma_{R,d}$ für Streifenfundamente auf nichtbindigen Böden (Schicht 3) auf der Grundlage einer ausreichenden Grundbruchsicherheit und Setzungsberechnung

Kleinste Einbindetiefe des Fundaments in m	Bemessungswerte des Sohlwiderstandes $\sigma R,d$ in kN/m² bei Fundamentbreiten b bzw. b' von					
	0,5 m	1,0 m	1,5 m	2,0 m	2,5 m	3,0 m
0,5	280	420	460	390	350	310
1,0	380	520	500	430	380	340
1,5	480	620	550	480	410	360
2,0	560	700	590	500	430	390
Einbindetiefe 0,3 m ≤ d ≤ 0,5 m und Fundamentbreite b bzw. b' ≥ 0,3 m	210					

ACHTUNG — Die angegebenen Werte sind Bemessungswerte des Sohlwiderstands, keine aufnehmbaren Sohldrücke nach DIN 1054:2005-01 und keine zulässigen Bodenpressungen nach DIN 1054:1976-11.

Geplante Bauwerke und dazugehörige Bauwerkslasten im Untersuchungsgebiet lagen bis zur Fertigstellung des geotechnischen Voruntersuchungsberichtes nicht vor. Setzungsberechnungen und Nachweise nach EC7-1 und DIN 1054 mit Ansatz der endgültigen Fundamentgeometrie und anzusetzender Bauwerkslasten sind im Rahmen der weiteren Planung zu erbringen.

6.4 Böschungen und Baugruben

Unbelastete Wände von Baugruben können nach DIN 4124 bis zu einer Tiefe von 1,25 m senkrecht angelegt werden. Tieferliegende Baugruben in den Sanden sind nach DIN 4124 max. 45° abzuböschen. Oberhalb von Baugrubenböschungen sind 0,6 m breite lastfreie Streifen nach DIN 4124 einzuhalten. Sind fachgerechte Abböschungen aus Platzgründen nicht möglich, ist nach statischen und konstruktiven Erfordernissen zu verbauen. Erforderliche Nachweise sind mit Berücksichtigung planungsseitig vorgesehener Bautenstände und anzusetzender Wasserstände bei den weiteren Planungen zu erbringen.

Aushubsohlen sind mit glatter Schneide herzustellen, nicht zu befahren, fachgerecht nachzuverdichten und mit einer Sauberkeitsschicht aus Magerbeton abzudecken. Die Sauberkeitsschicht ist so zu gestalten, dass anfallende Niederschläge schadlos in den Untergrund abgeleitet werden können.

Projekt-Nr.: RK-006/04/24 16.08.2024 Seite 23 von 24

Bauvorhaben: Neubau interkommunaler Schulcampus Schulzendorf

6.5 Wasserhaltung

Geplante Gründungsordinaten liegen nicht vor. Während der Aufschlussarbeiten wurden Grundwasserstände von ≤ 36,00 m DHHN2016 erkundet, d.h. nach derzeitigem Stand werden die Gründungsarbeiten bei konventionellen Flachgründungen (ohne Unterkellerungen) nicht mit Grundwasser in Berührung kommen. Besondere Maßnahmen zur Wasserhaltung sind somit nicht erforderlich. Die Erdarbeiten sind so zu gestalten, dass jeglicher Zulauf von Oberflächenwasser in die Baugruben vermieden werden. Freigelegtes Planum ist mit einem Gefälle herzustellen und anfallende Niederschläge sind fachgerecht aufzunehmen (ggf. offene Wasserhaltung) und schadlos abzuleiten.

7. Vorschläge für weitere Untersuchungen und Messungen

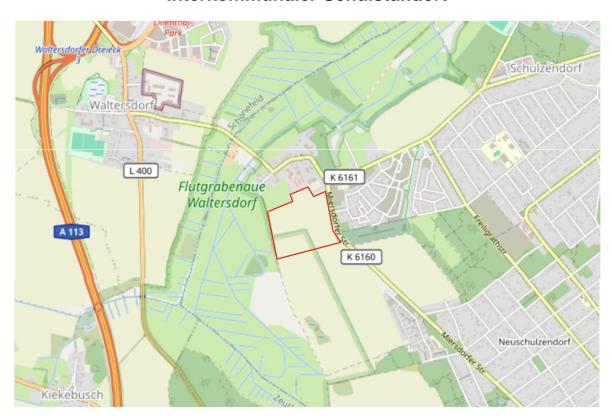
Vorerst liegen keine detaillierten Angaben zur Höhenanbindung, Bauweise und Lasteinträgen vor, so dass erdstatische Berechnungen und Nachweise bei den weiteren Planungen zu erbringen sind.

Die Probenahmen für umwelttechnischen Untersuchungen erfolgten mit punktförmigen Aufschlüssen bei der Baugrunduntersuchung entnommenen Bodenproben. Mit nicht erfassten Bereichen und Böden (u. a. inhomogene Bodengemenge, lokalen Auffüllungen etc.) ist zu rechnen. Die vorliegenden Laborergebnisse und Zuordnungen sind als Orientierungswerte für weitere Planungen zu betrachten. Für nicht erfasste Bereiche und Böden sowie für an Dritte abzugebende Aushubböden sind im Zuge der weiteren Planung, je nach geplanter Verwendung / Verwertung / Entsorgung Probenahmen und Laboruntersuchungen (BBodSchV, EBV, Spiegeleintrag und ggf. nach DepV) vorzusehen. Gleiches gilt für bauzeitliche Probenahmen und Laboruntersuchungen.

Aufgrund des punktförmigen Charakters der Baugrundaufschlüsse sind nicht erfasste Unregelmäßigkeiten/Abweichungen zum beschriebenen Baugrundmodell nicht auszuschließen. Deshalb sind freigelegte Aushub-/ Gründungssohlen von baugrundtechnischer Seite prüfen und zur Überbauung freigeben zu lassen. Entsprechende Abnahmen sind ins Leistungsverzeichnis aufzunehmen.

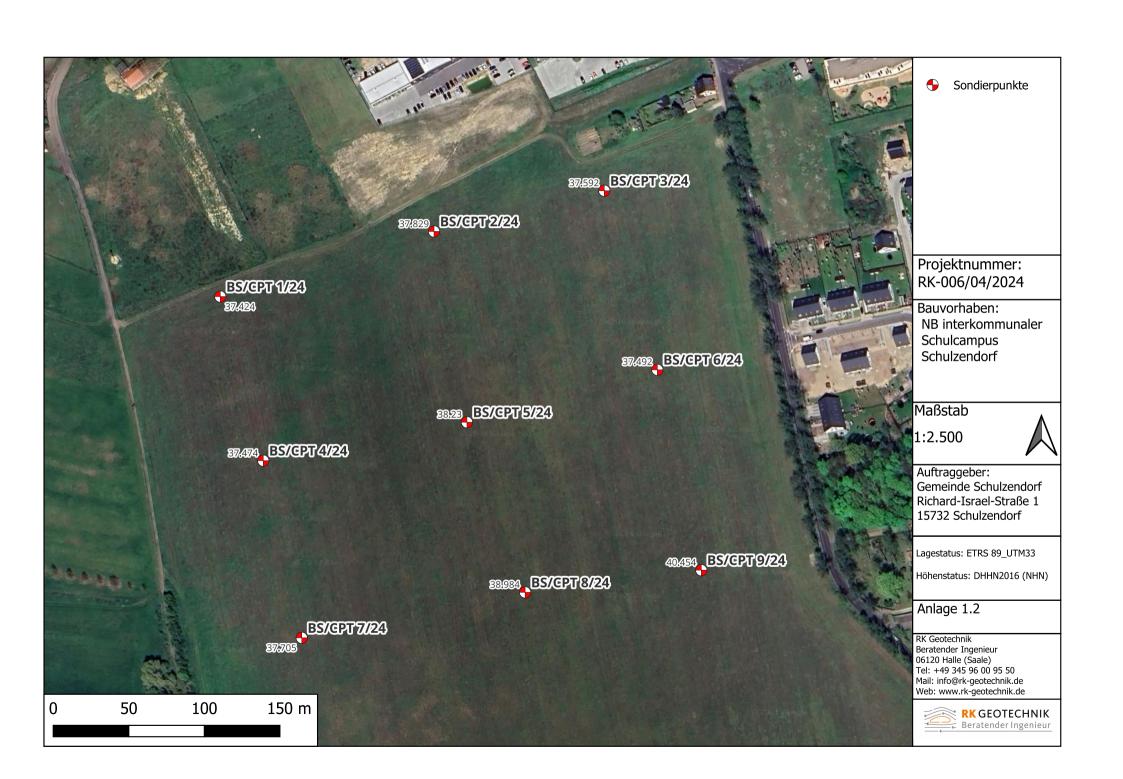
Projekt-Nr.: RK-006/04/24 16.08.2024 Seite 24 von 24

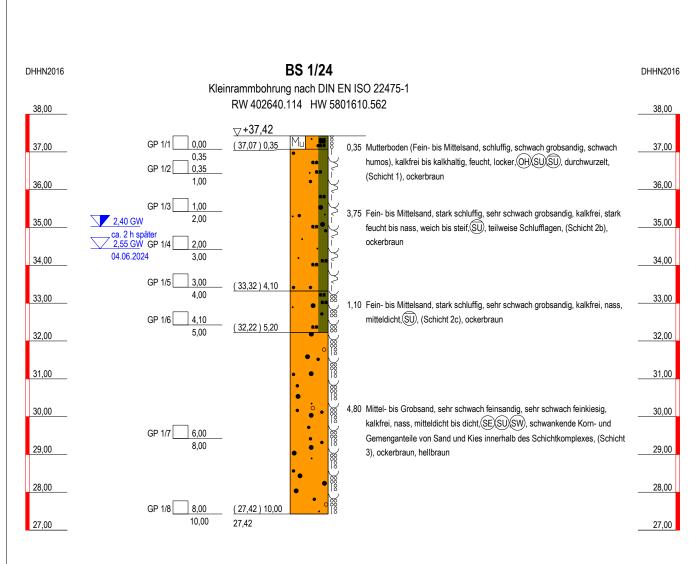
Bauvorhaben: Neubau interkommunaler Schulcampus Schulzendorf


Die vorliegende Voruntersuchung ist nur in seiner Gesamtheit verbindlich und gilt in seiner inhaltlichen und räumlichen Abgrenzung für das beschriebene Bauvorhaben: Neubau interkommunaler Schulcampus Schulzendorf. Alle Empfehlungen und Folgerungen basieren auf den vorliegenden Aufschluss- und Laborergebnissen, den aufgeführten Unterlagen und dem Planungsstand zum Zeitpunkt der Berichterstellung.

* * * * * *

Übersichtskarte


Interkommunaler Schulstandort



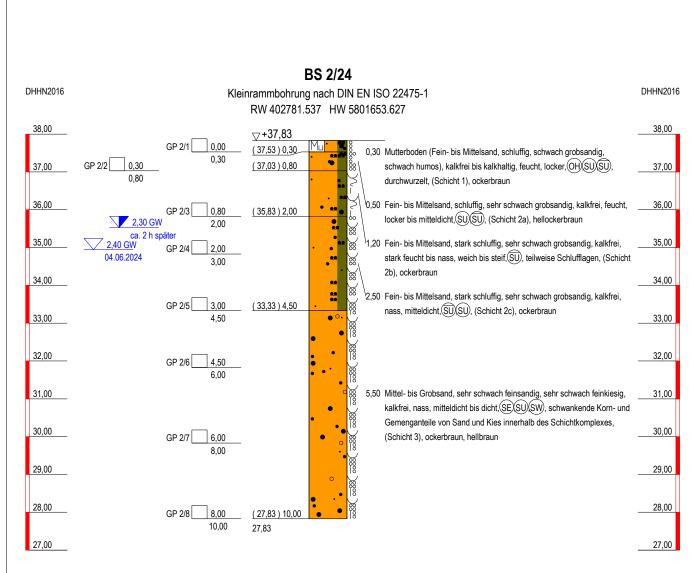
Kartengrundlage PST GmbH

Auftragnehmer	RK Geotechnik Querstraße 4 06120 Halle		TECHNIK er Ingenieur	
Planbezeichnung	Übersichtsplan			
Bauvorhaben	Neubau interkommunaler Schulcampus Schulzendorf		Auftrags-Nr. RK-006/04/2024	
Gemeinde Schulz Auftraggeber Richard-Israel-Str			Maßstab: ohne	
Aditiaggebei	15732 Schulzendorf		Anlage 1.1	

Bauvorhaben:

Neubau interkommunaler Schulcampus in Schulzendorf

Planbezeichnung: Aufschlussprofil BS 1/24 Anlage: 2 Blatt 1

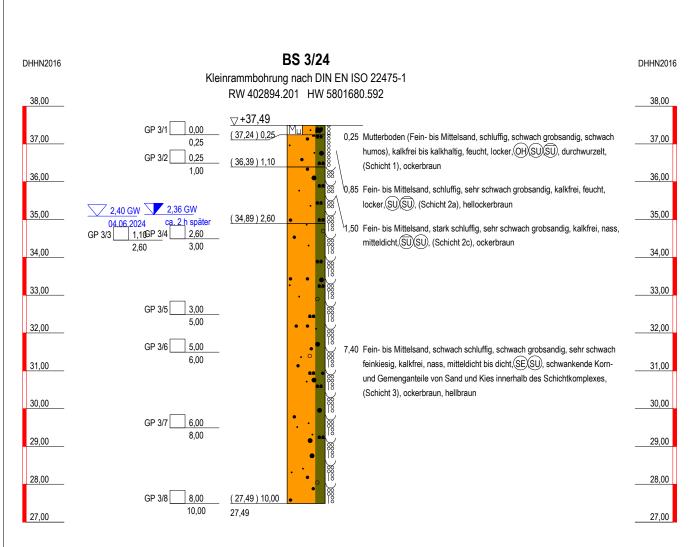

Auftr.-Nr: RK-006/04/2024

02.07.2024

Maßstab: 1:100

Bearbeiter: Klein

Datum:


Bauvorhaben:

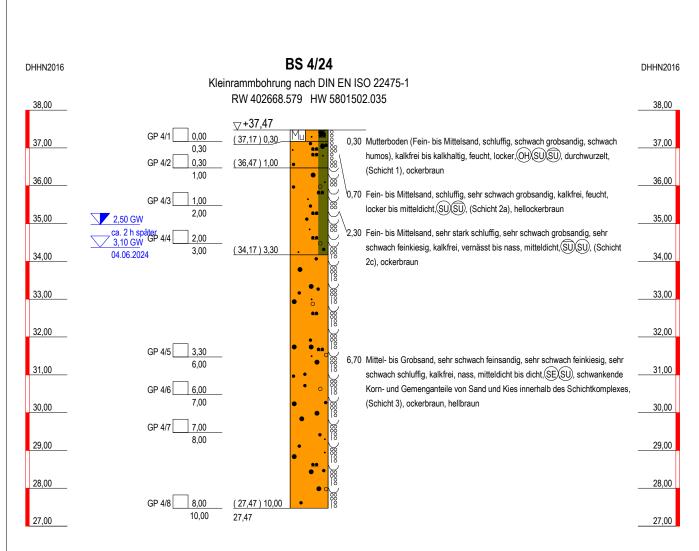
Neubau interkommunaler Schulcampus in Schulzendorf

Planbezeichnung: Aufschlussprofil BS 2/24

Anlage: 2 Blatt 2 Auftr.-Nr: RK-006/04/2024 Datum: 02.07.2024

Maßstab: 1:100

Bauvorhaben:


Neubau interkommunaler Schulcampus in Schulzendorf

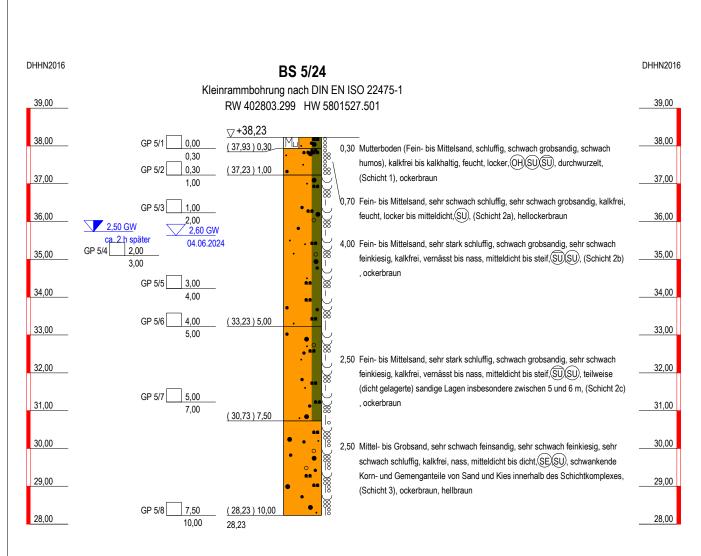
Planbezeichnung: Aufschlussprofil BS 3/24 Anlage: 2 Blatt 3

Auftr.-Nr: RK-006/04/2024

Datum: 02.07.2024

Maßstab: 1:100

Bauvorhaben:


Neubau interkommunaler Schulcampus in Schulzendorf

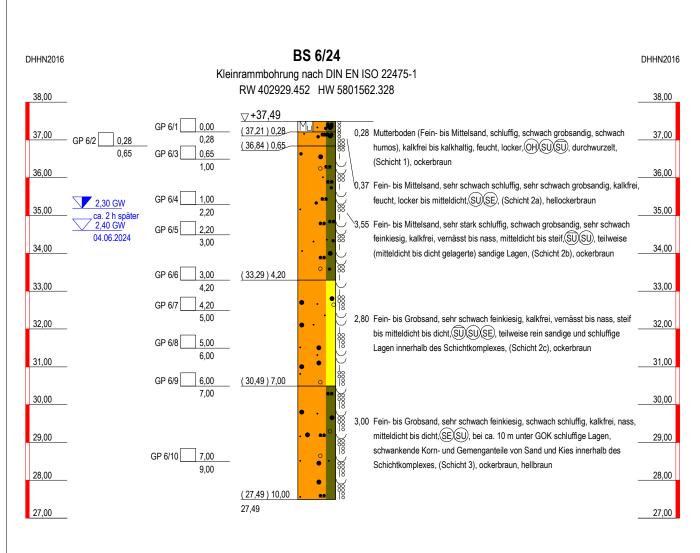
Planbezeichnung: Aufschlussprofil BS 4/24 Anlage: 2 Blatt 4

Auftr.-Nr: RK-006/04/2024

Datum: 02.07.2024

Maßstab: 1:100

Bauvorhaben:


Neubau interkommunaler Schulcampus in Schulzendorf

Planbezeichnung: Aufschlussprofil BS 5/24 Anlage: 2 Blatt 5

Auftr.-Nr: RK-006/04/2024

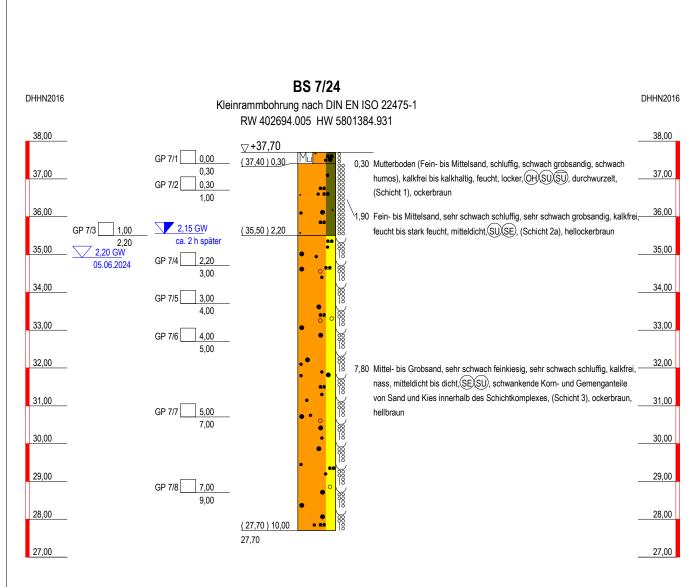
Datum: 02.07.2024

Maßstab: 1:100

Bauvorhaben:

Neubau interkommunaler Schulcampus in Schulzendorf

Planbezeichnung: Aufschlussprofil


BS 6/24

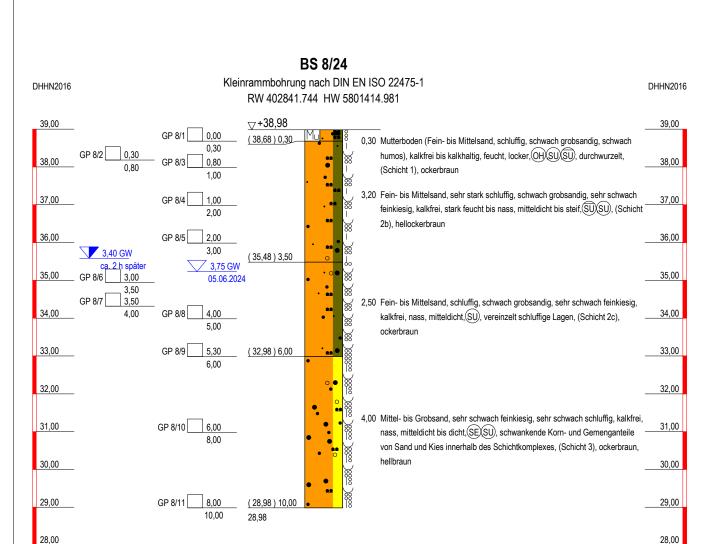
Anlage: 2 Blatt 6

Auftr.-Nr: RK-006/04/2024

Datum: 02.07.2024

Maßstab: 1:100

Bauvorhaben:


Neubau interkommunaler Schulcampus in Schulzendorf

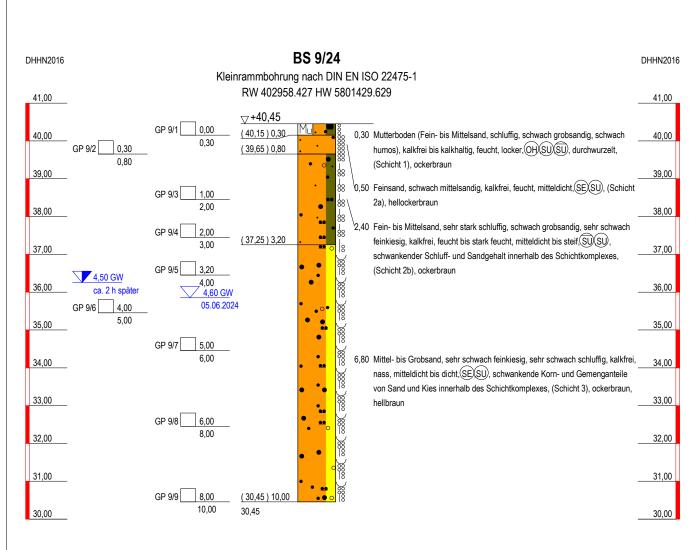
Planbezeichnung: Aufschlussprofil BS 7/24 Anlage: 2 Blatt 7

Auftr.-Nr: RK-006/04/2024

Datum: 02.07.2024

Maßstab: 1:100

Bauvorhaben:


Neubau interkommunaler Schulcampus in Schulzendorf

Planbezeichnung: Aufschlussprofil BS 8/24 Anlage: 2 Blatt 8

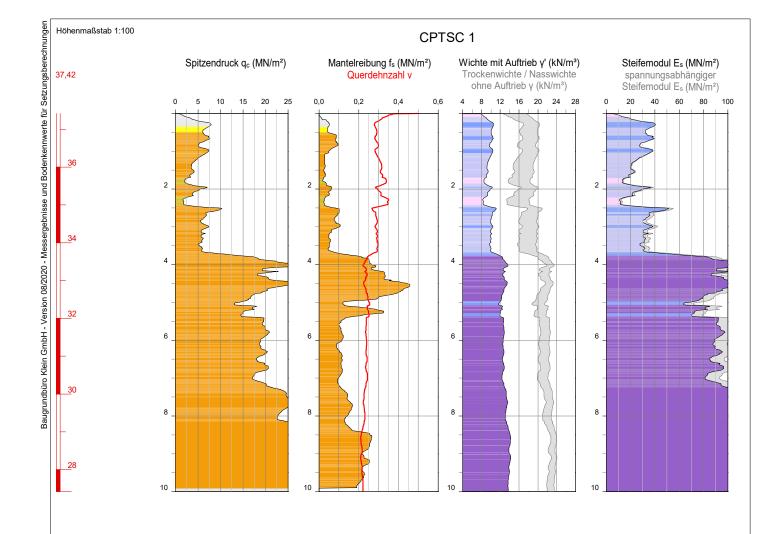
Auftr.-Nr: RK-006/04/2024

Datum: 02.07.2024

Maßstab: 1:100

Bauvorhaben:

Neubau interkommunaler Schulcampus in Schulzendorf


Planbezeichnung: Aufschlussprofil BS 9/24 Anlage: 2 Blatt 9

Auftr.-Nr: RK-006/04/2024

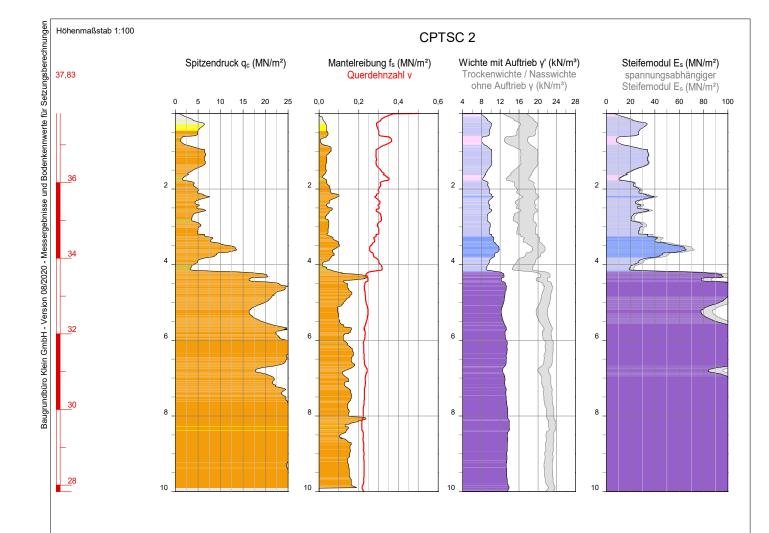
Datum: 02.07.2024

Maßstab: 1:100

ZEICHENERKLÄRUNG (S. DIN	
UNTERSUCHUNGSSTELLEN SCH Schurf B Bohrung BK Bohrung mit durchgehender Kerngewinnung BP Bohrung mit Gewinnung nicht gekernter Proben BuP Bohrung mit Gewinnung unvollständiger Proben DPL leichte Rammsondierung (DIN EN ISO 22476-2) DPM mittelschwere Rammsondierung (DIN EN ISO 22476-2) DPH schwere Rammsondierung (DIN EN ISO 22476-2) BS Sondierbohrung (DIN EN ISO 22475-1) CPT Drucksondierung nach DIN 4094-2 RKS Rammkernsondierung GWM Grundwassermeßstelle	PRÓBENENTNAHME UND GRUNDWASSER Proben-Güteklasse nach DIN 4021 Tab.1 Grundwasser angebohrt Grundwasser nach Bohrende Ruhewasserstand Schichtwasser angebohrt Sonderprobe Bohrprobe (Eimer 5 I) Bohrprobe (Glas 0.7I) k.GW kein Grundwasser Bohrkern GK2
BODENARTEN Auffüllung Geschiebemergel mergelig Mg me Kies kiesig G g Mudde organisch M o Sand sandig S s Schluff schluffig U u Schotter mit Schottern Y y Steine steinig X x Ton tonig T t Torf humos H h	FELSARTEN Fels,allgemein Z 7/7/7/ Fels,verwittert Zv 7/7/7/ Granit Gr Kalkstein Kst Kongl.,Brekzie Gst Mergelstein Mst Sandstein Sst Schluffstein Ust Tonstein Tst
KORNGRÖßENBEREICH f fein m mittel g grob	<u>'</u> schwach (< 15 %) stark (ca. 30-40 %) " sehr schwach; ⁼ sehr stark
brg \$ \$ breiig wch \$ weich hfst halbfest steif steif hfst halbfest RAMMSONDIERUNG NACH EN ISO 22476-2 Schlagzahlen für 10 cm Eindringtiefe Spitzendurchmesser Spitzendurchmesser Rammbargewicht Spitzendurchmesser Spitzendurchmes	FEUCHTIGKEIT KLÜFTUNG KIÜ
Bauvorhaben: Neubau interkommunaler Schulcampus in Schulzendorf	'
Planbezeichnung:	
Legende der Baugrundprofile	
Anlage: 2 Blatt 10	Maßstab: 1:100
RK GEOTECHNIK Beratender Ingenieur Querstraße 4	Bearbeiter: Klein Datum: Gezeichnet: Klein 02.07.2024 Geändert:
06120 Halle	Gesehen:
03 45 / 96 00 95 50 info@rk-geotechnik.de	AuftrNr: RK-006/04/2024

Bodenreaktionsgruppe bindig

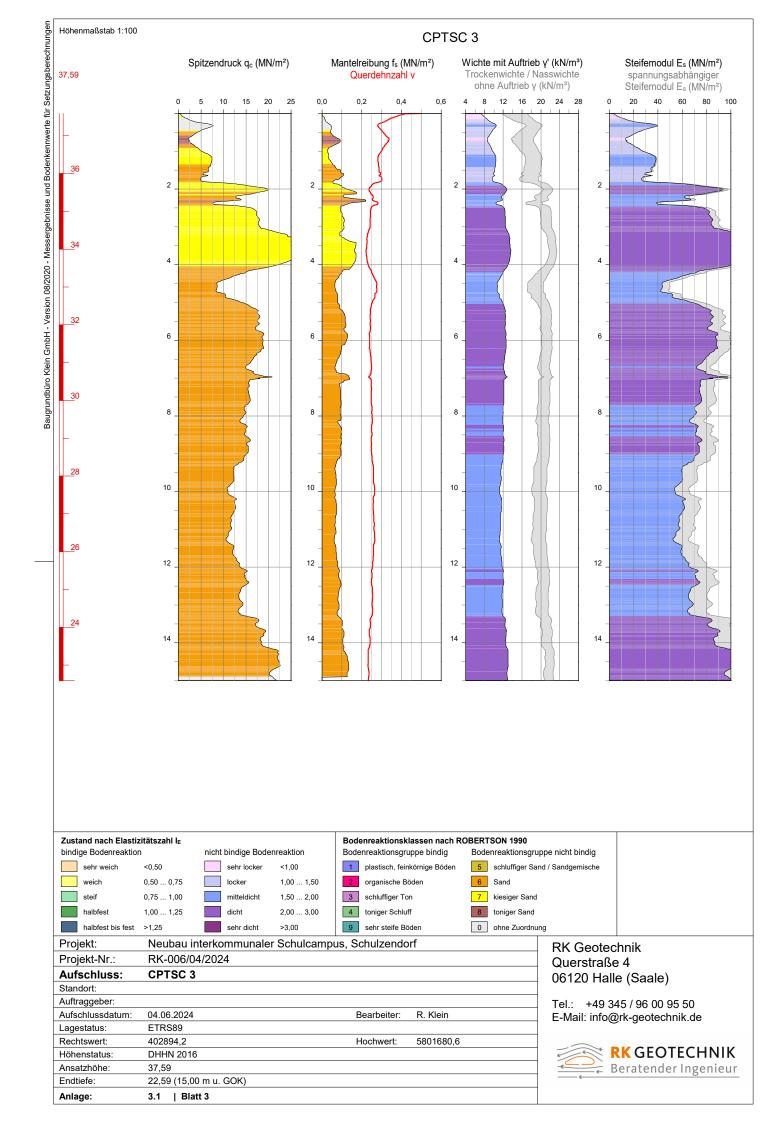
nicht bindige Bodenreaktion

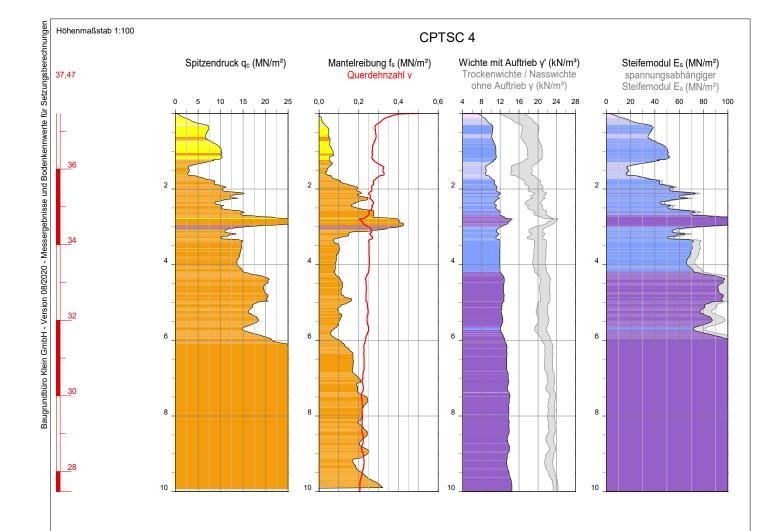

Zustand nach Elastizitätszahl IE

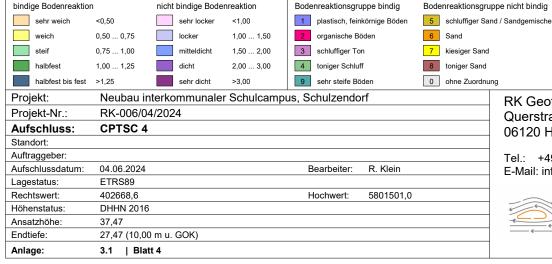
bindige Bodenreaktion

RK Geotechnik Querstraße 4 06120 Halle (Saale)

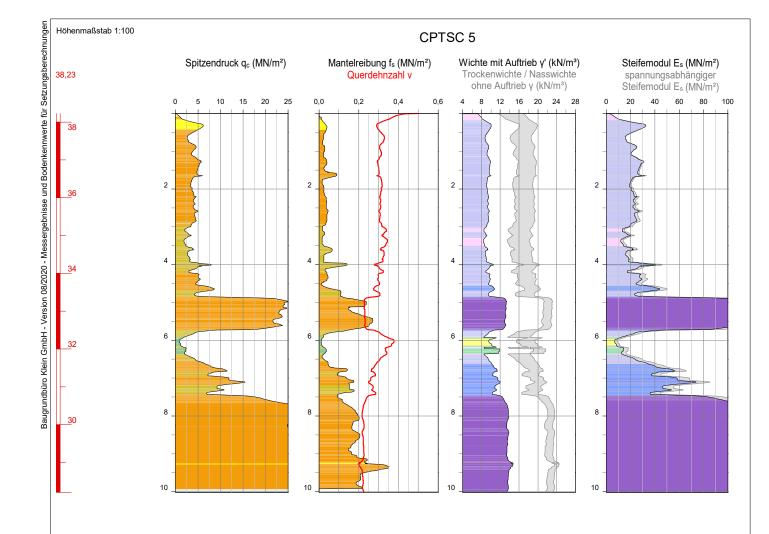
Bodenreaktionsgruppe nicht bindig




Zustand nach Elastizitätszahl IE

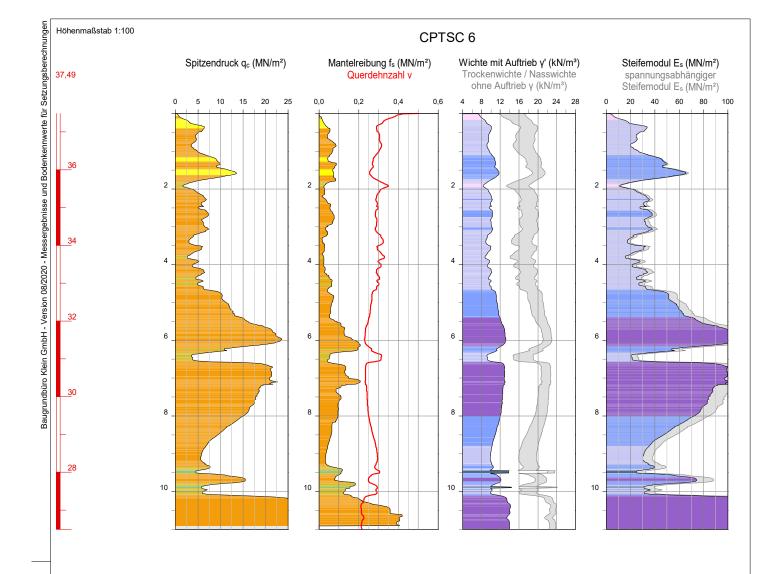

bindige Bodenreaktion

RK Geotechnik Querstraße 4 06120 Halle (Saale)



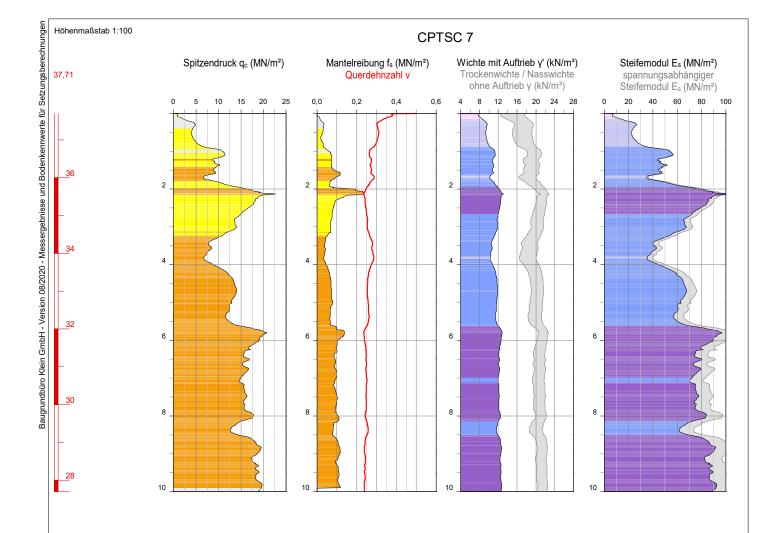
Zustand nach Elastizitätszahl IE

RK Geotechnik Querstraße 4 06120 Halle (Saale)



Zustand nach Elastizitätszahl IE

RK Geotechnik Querstraße 4 06120 Halle (Saale)

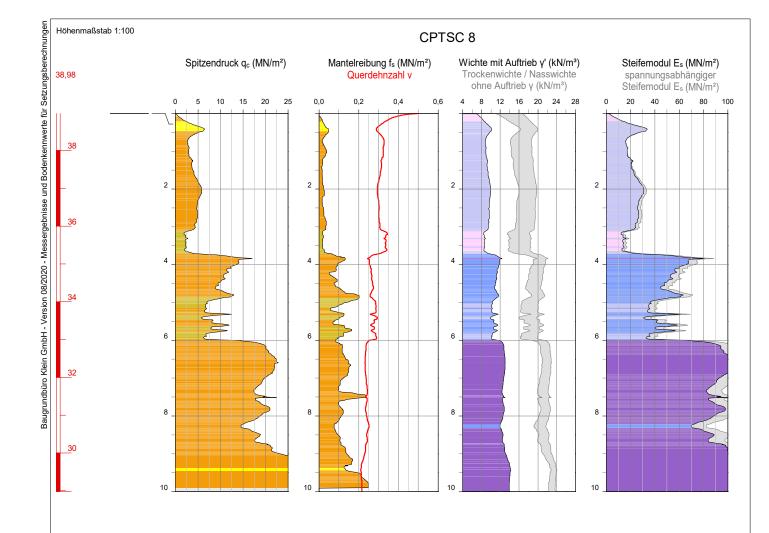


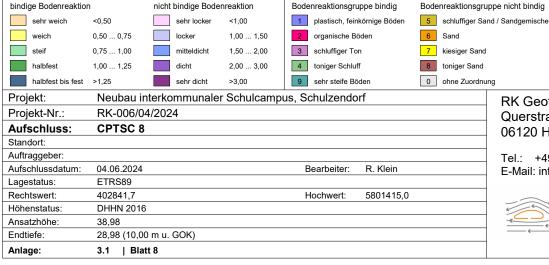
Zustand nach Elastizitätszahl IE

RK Geotechnik Querstraße 4 06120 Halle (Saale)

Bodenreaktionsgruppe bindig

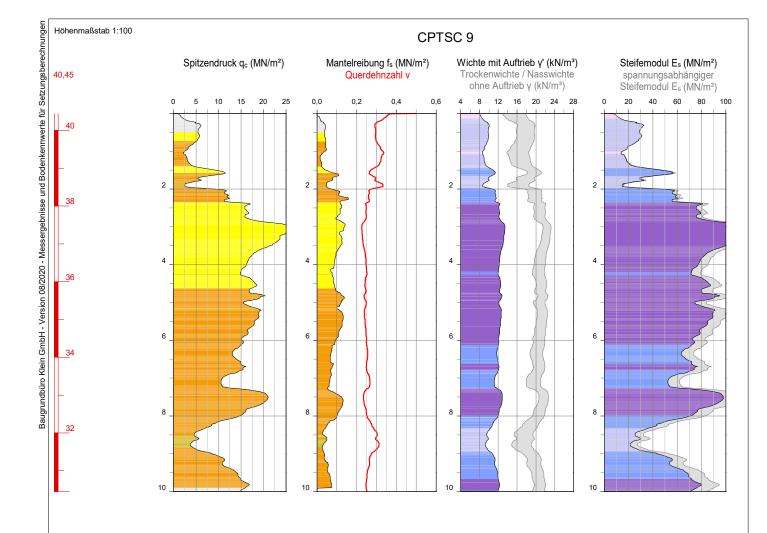
nicht bindige Bodenreaktion

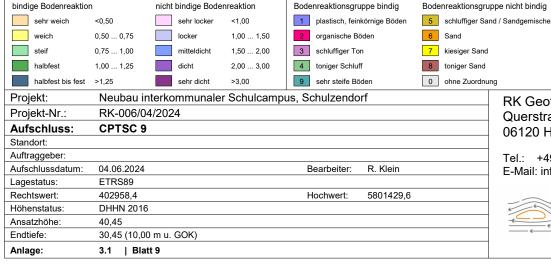

Zustand nach Elastizitätszahl IE


bindige Bodenreaktion

RK Geotechnik Querstraße 4 06120 Halle (Saale)

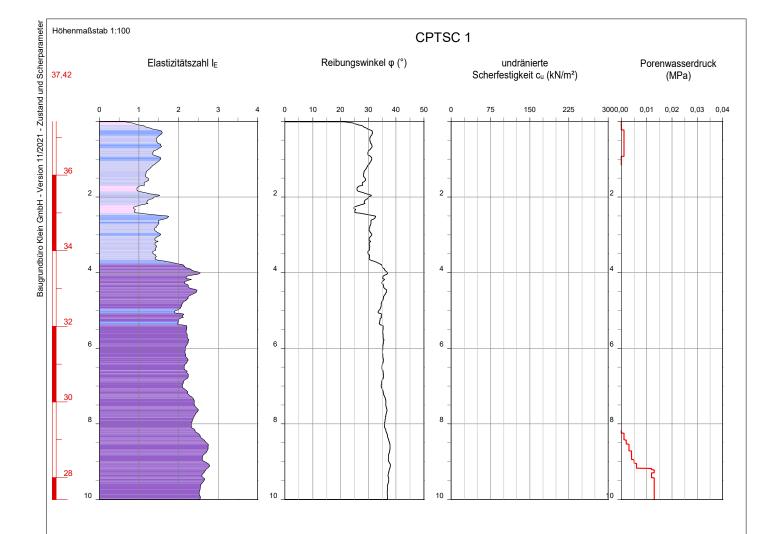
Bodenreaktionsgruppe nicht bindig





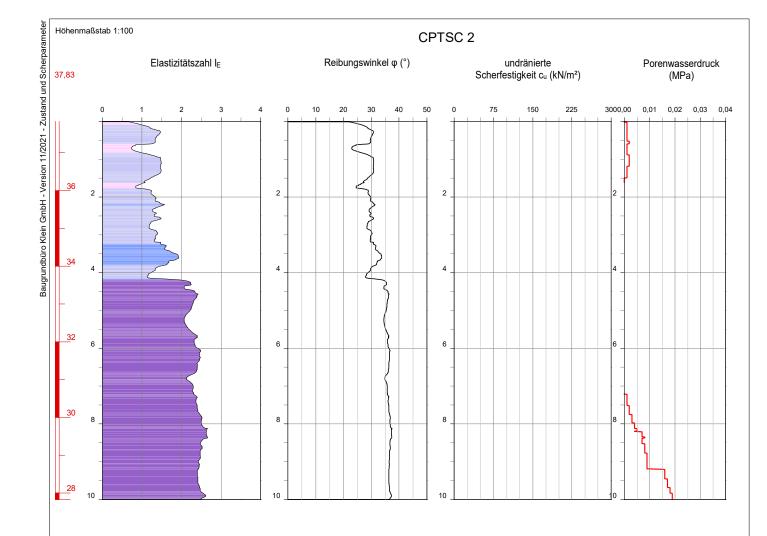
Zustand nach Elastizitätszahl IE

RK Geotechnik Querstraße 4 06120 Halle (Saale)



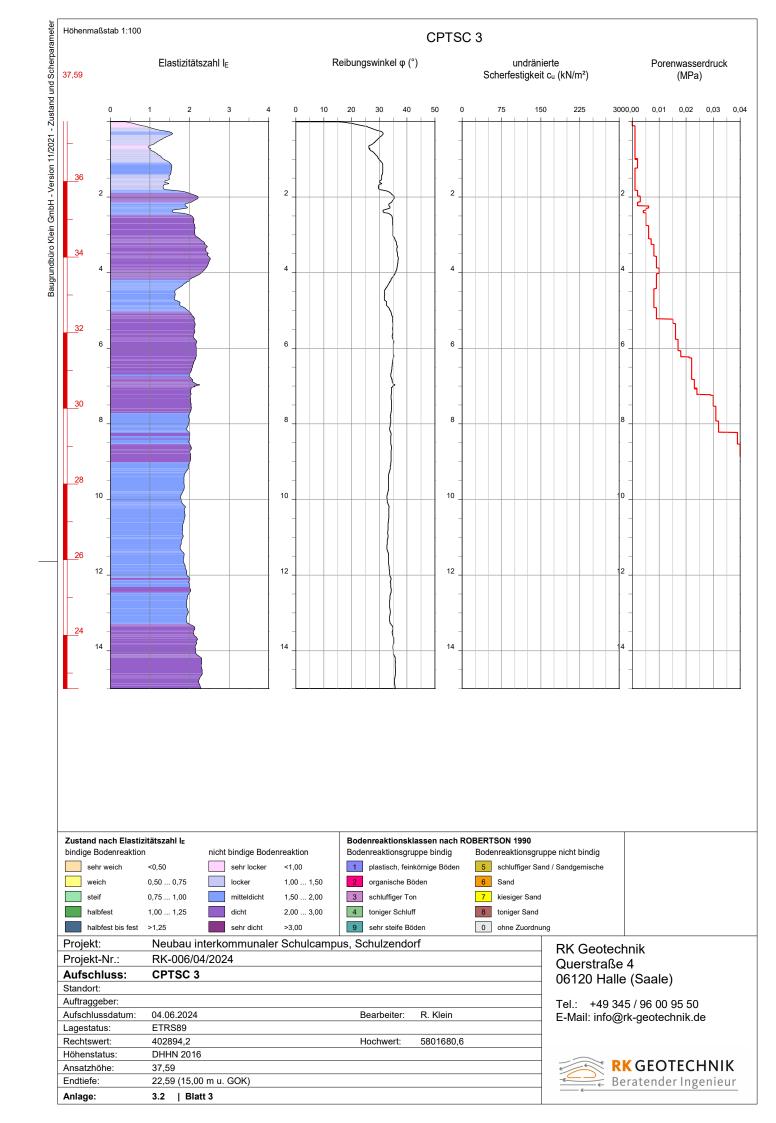
Zustand nach Elastizitätszahl IE

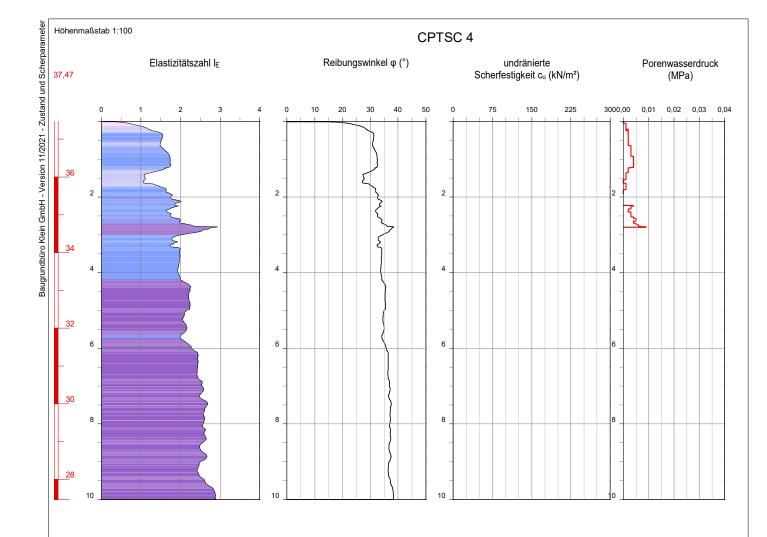
RK Geotechnik Querstraße 4 06120 Halle (Saale)



Zustand nach Elastizitätszahl IE

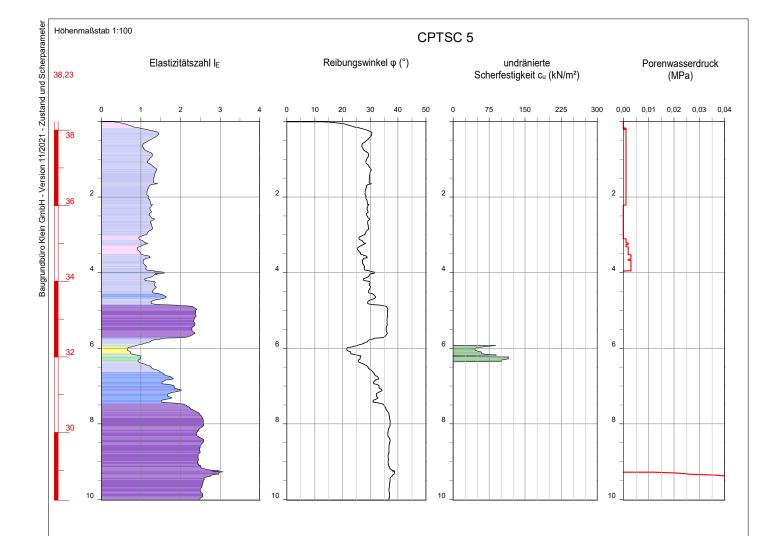
RK Geotechnik Querstraße 4 06120 Halle (Saale)





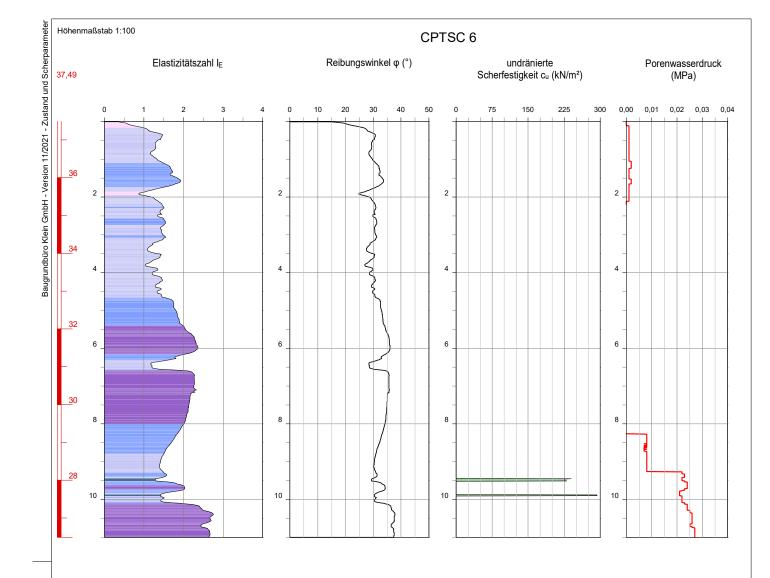
Zustand nach Elastizitätszahl IE

RK Geotechnik Querstraße 4 06120 Halle (Saale)



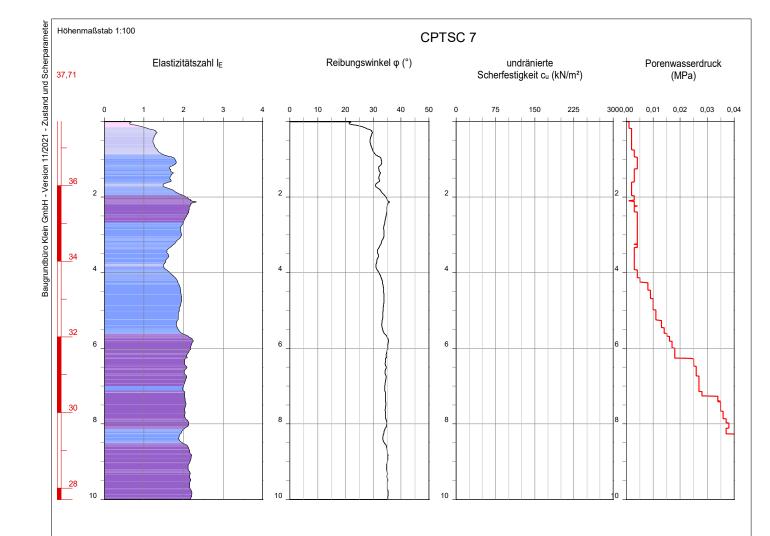
Zustand nach Elastizitätszahl IE

RK Geotechnik Querstraße 4 06120 Halle (Saale)



Zustand nach Elastizitätszahl IE

RK Geotechnik Querstraße 4 06120 Halle (Saale)

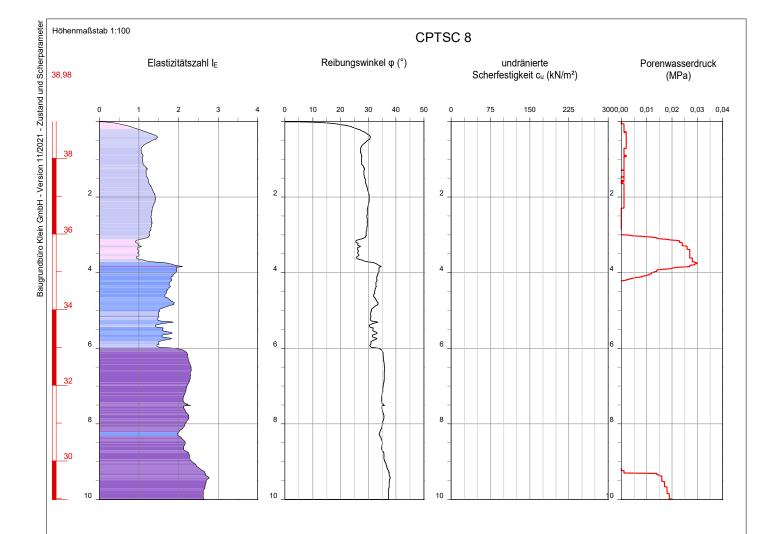


Zustand nach Elastizitätszahl IE

RK Geotechnik Querstraße 4 06120 Halle (Saale)

Bodenreaktionsgruppe nicht bindig

Bodenreaktionsgruppe bindig


nicht bindige Bodenreaktion

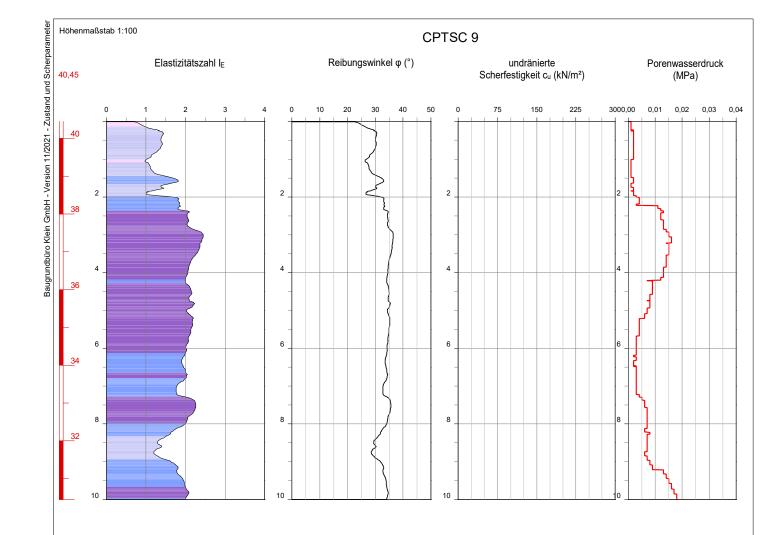
Zustand nach Elastizitätszahl IE

bindige Bodenreaktion

RK Geotechnik Querstraße 4 06120 Halle (Saale)

Bodenreaktionsgruppe nicht bindig

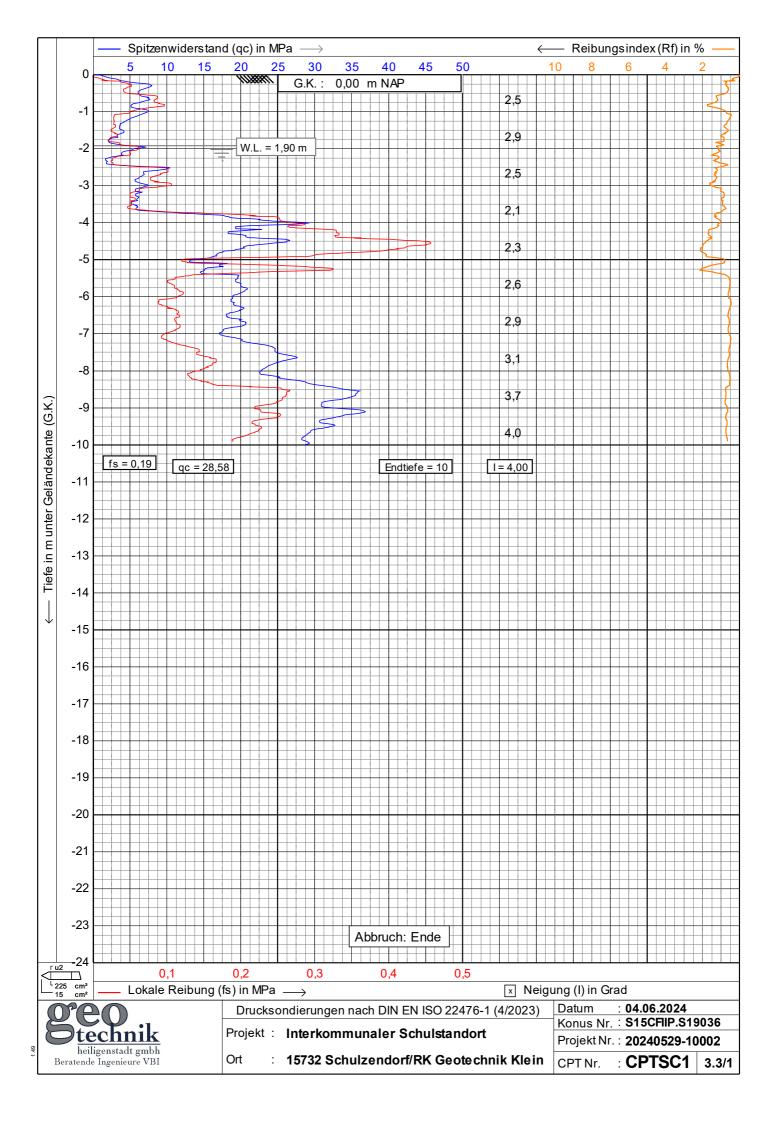
Bodenreaktionsgruppe bindig

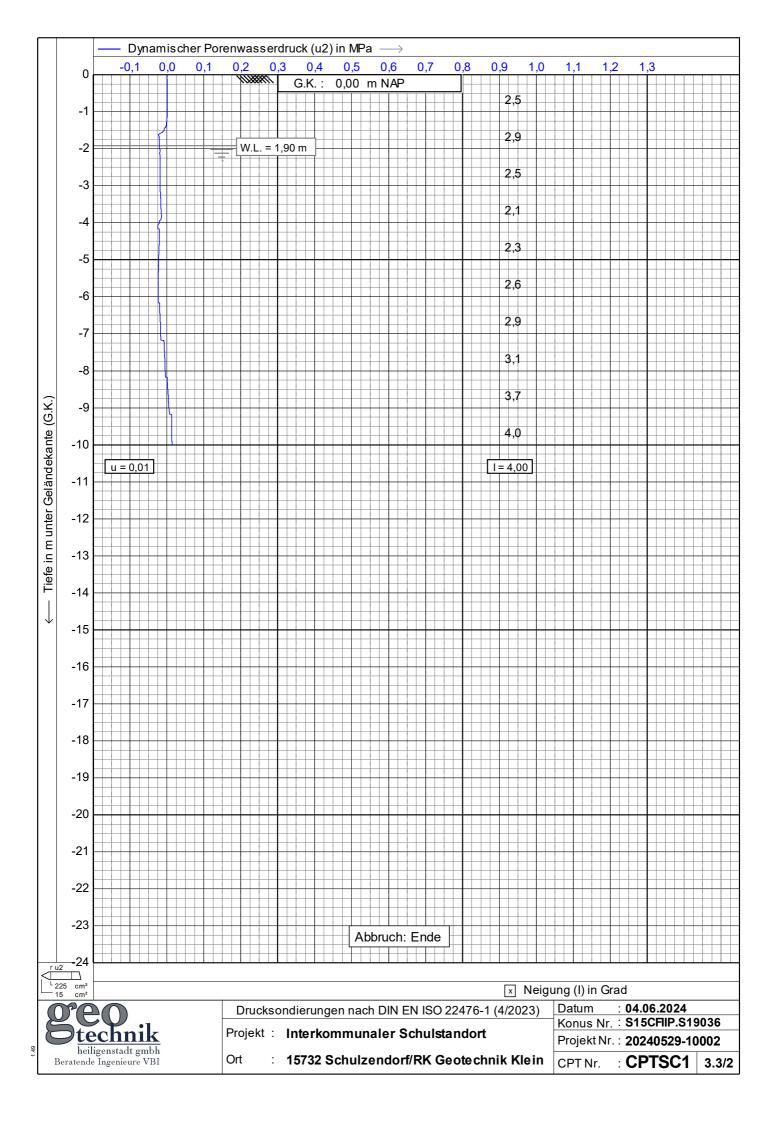

nicht bindige Bodenreaktion

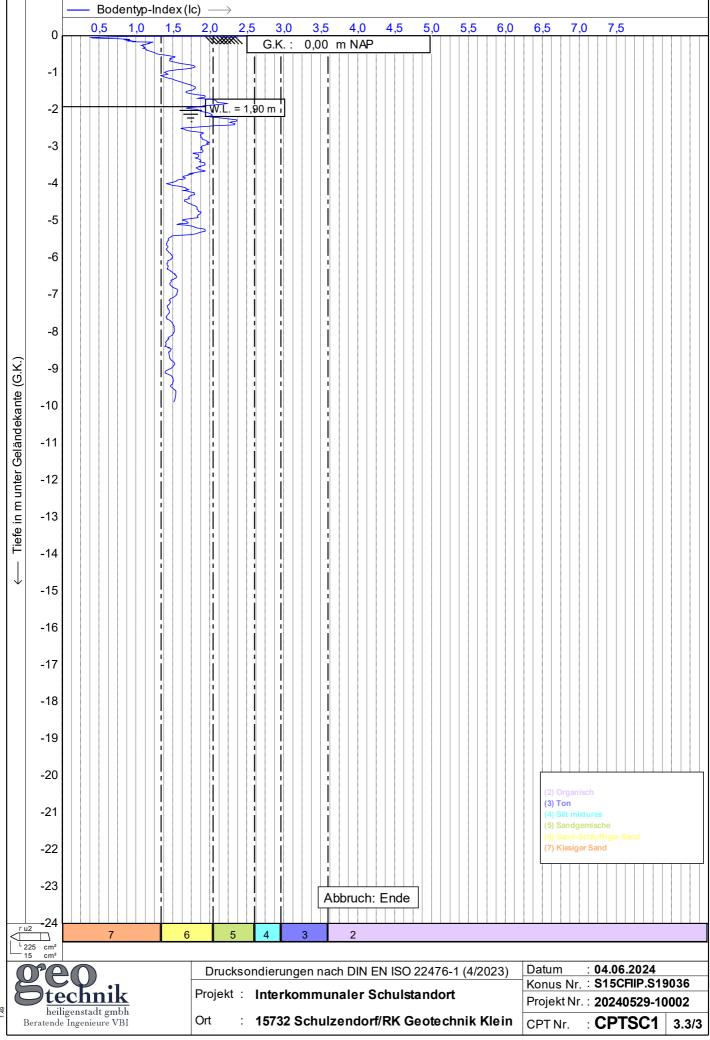
Zustand nach Elastizitätszahl IE

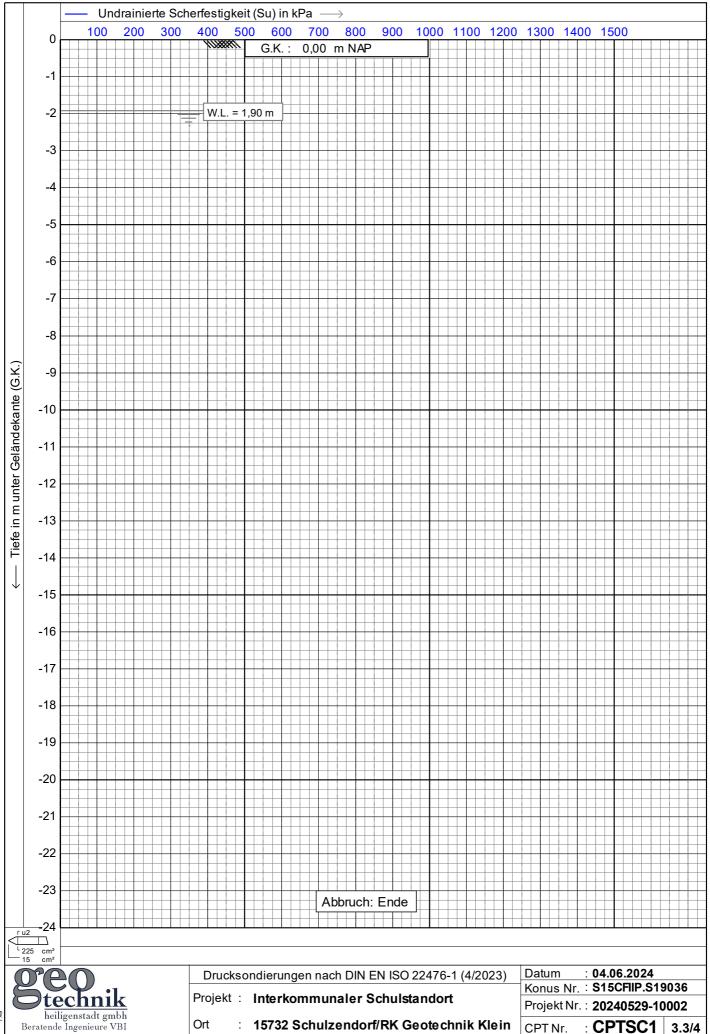
bindige Bodenreaktion

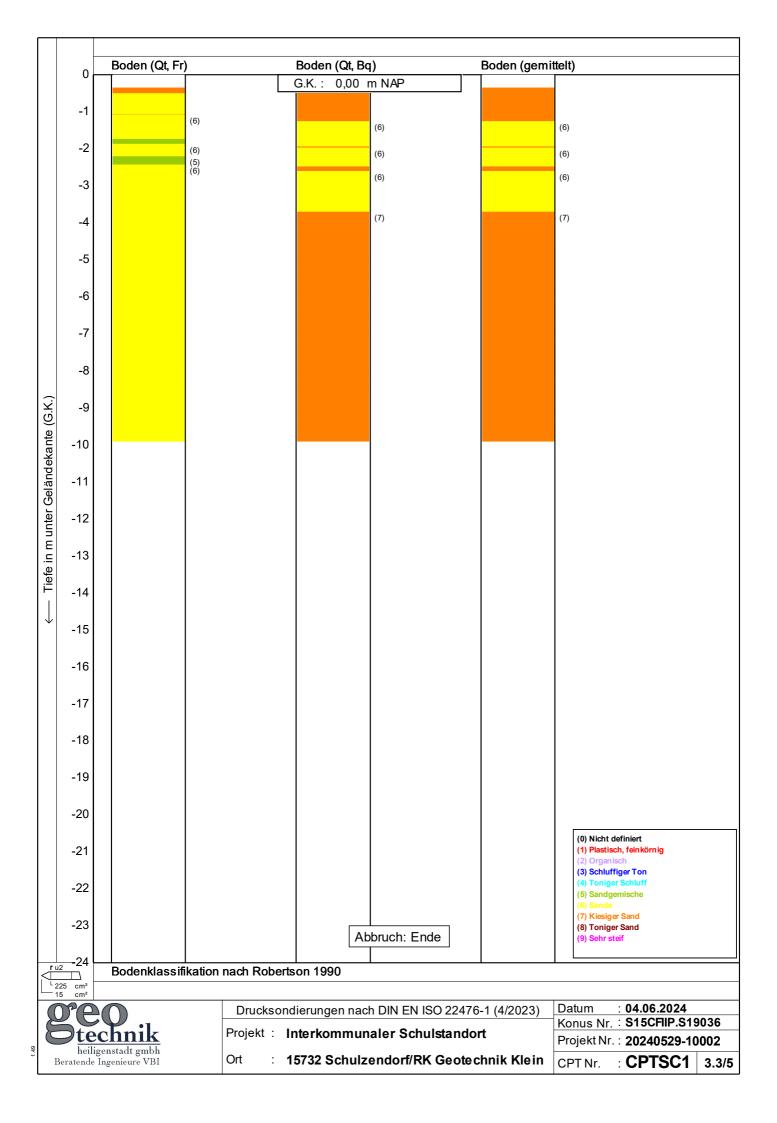
RK Geotechnik Querstraße 4 06120 Halle (Saale)

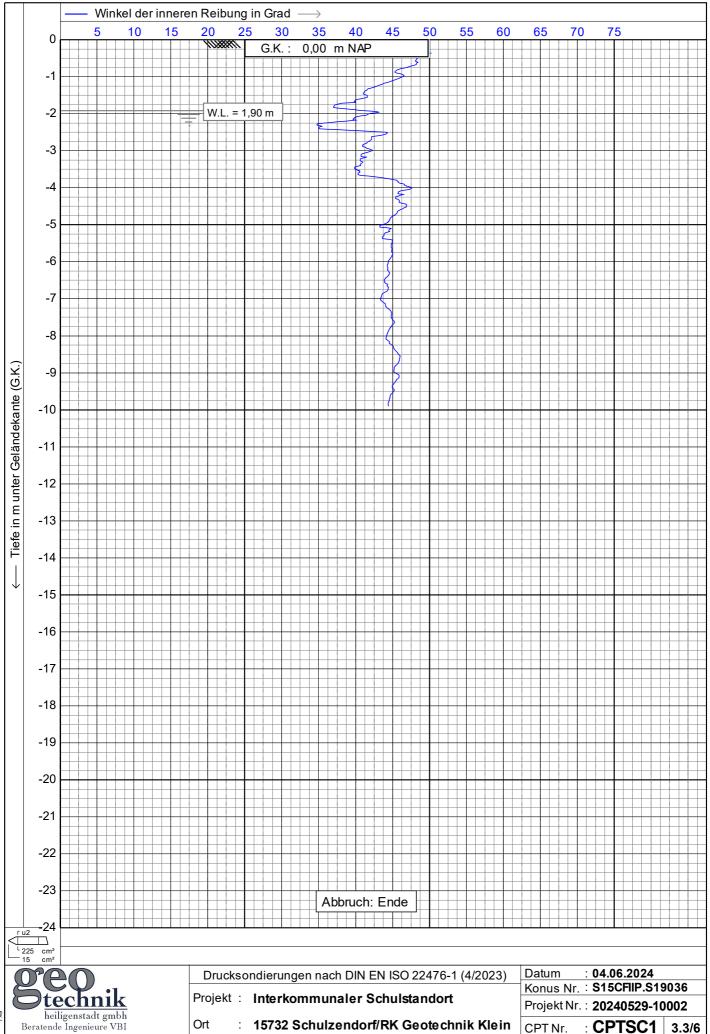


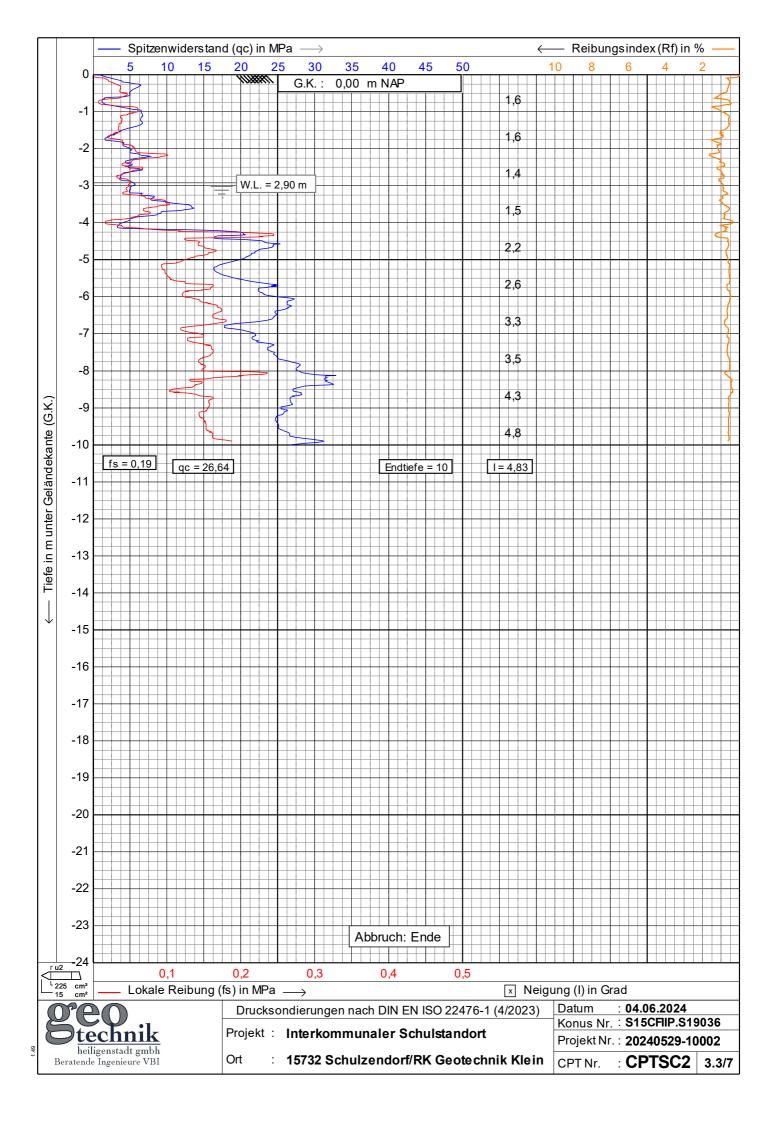


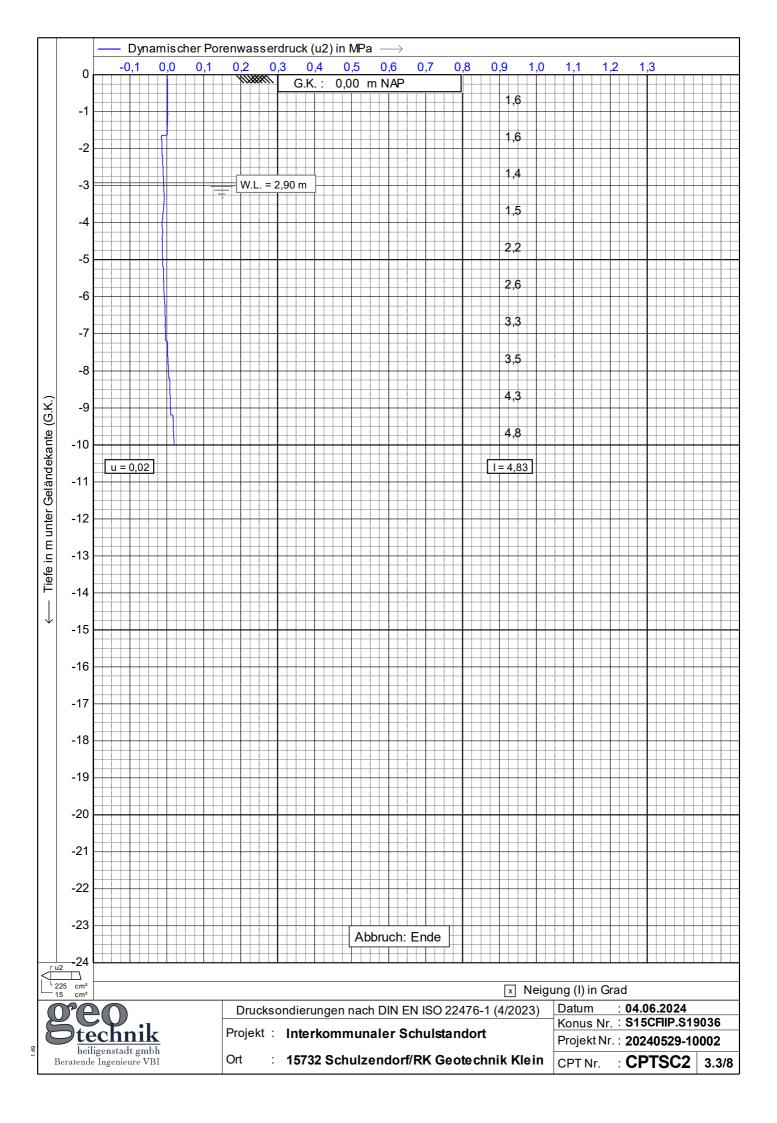

Zustand nach Elastizitätszahl IE

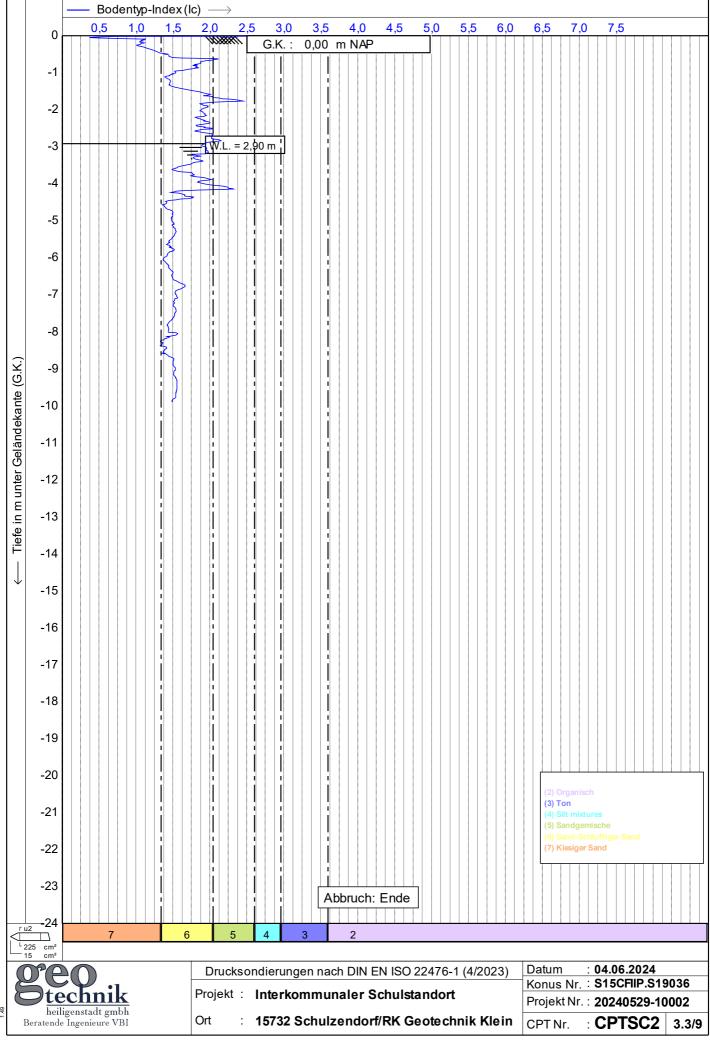

RK Geotechnik Querstraße 4 06120 Halle (Saale)

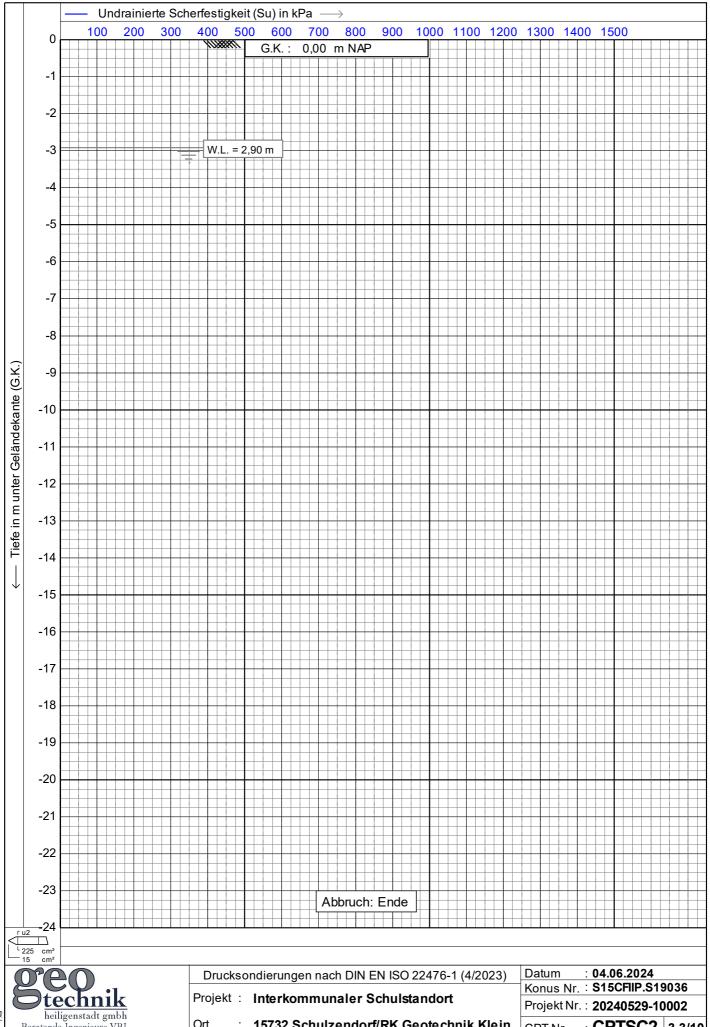




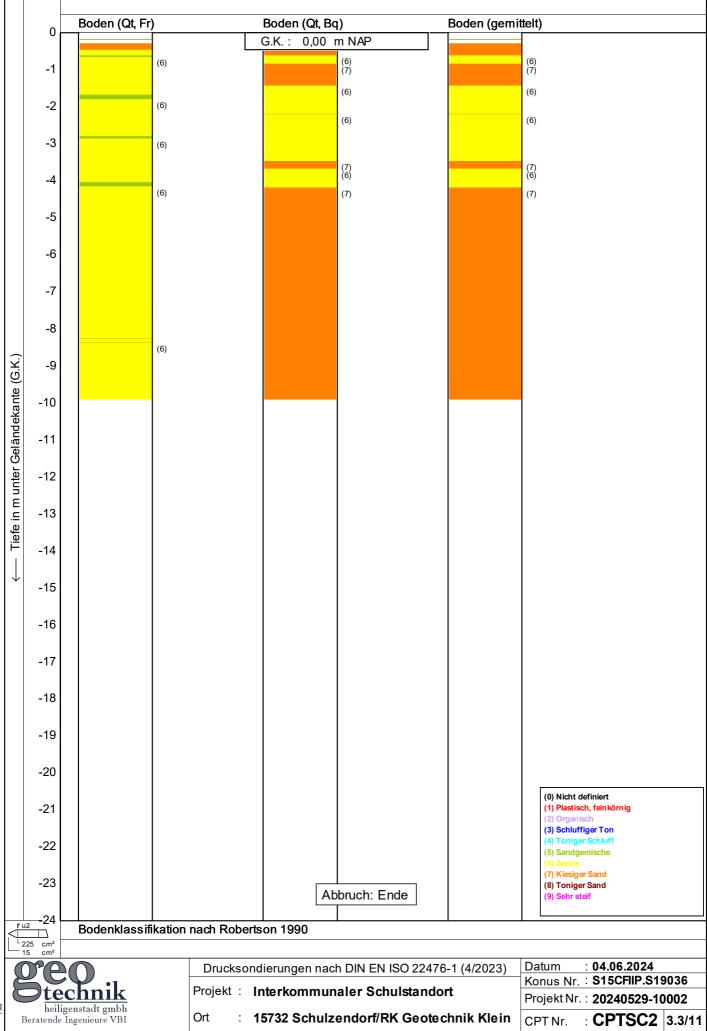


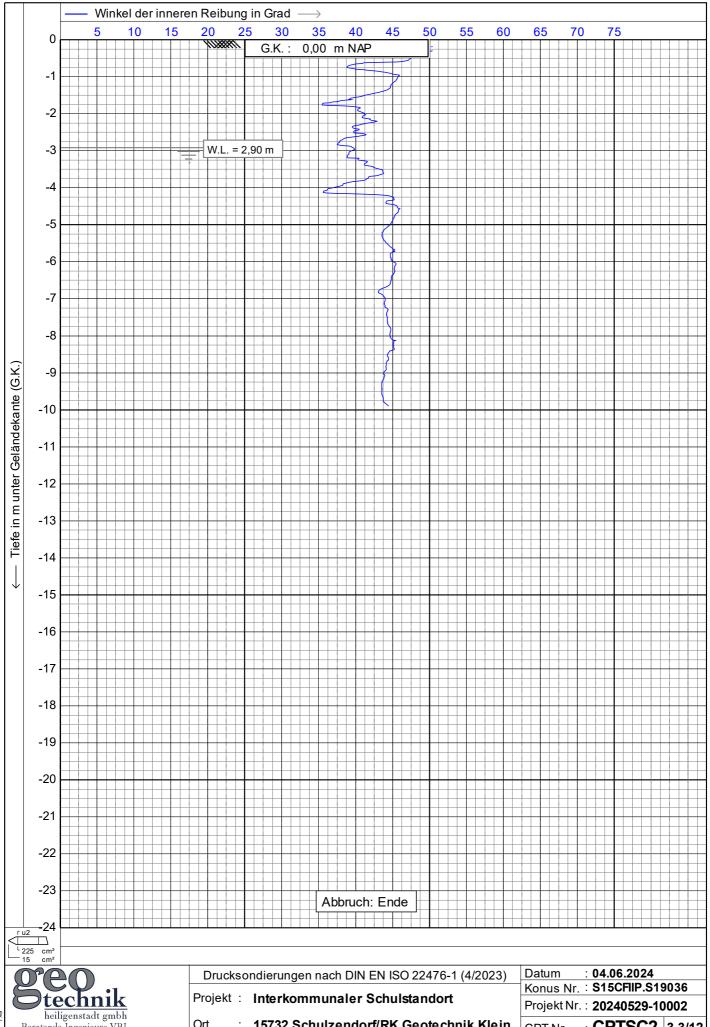

CPT Nr.



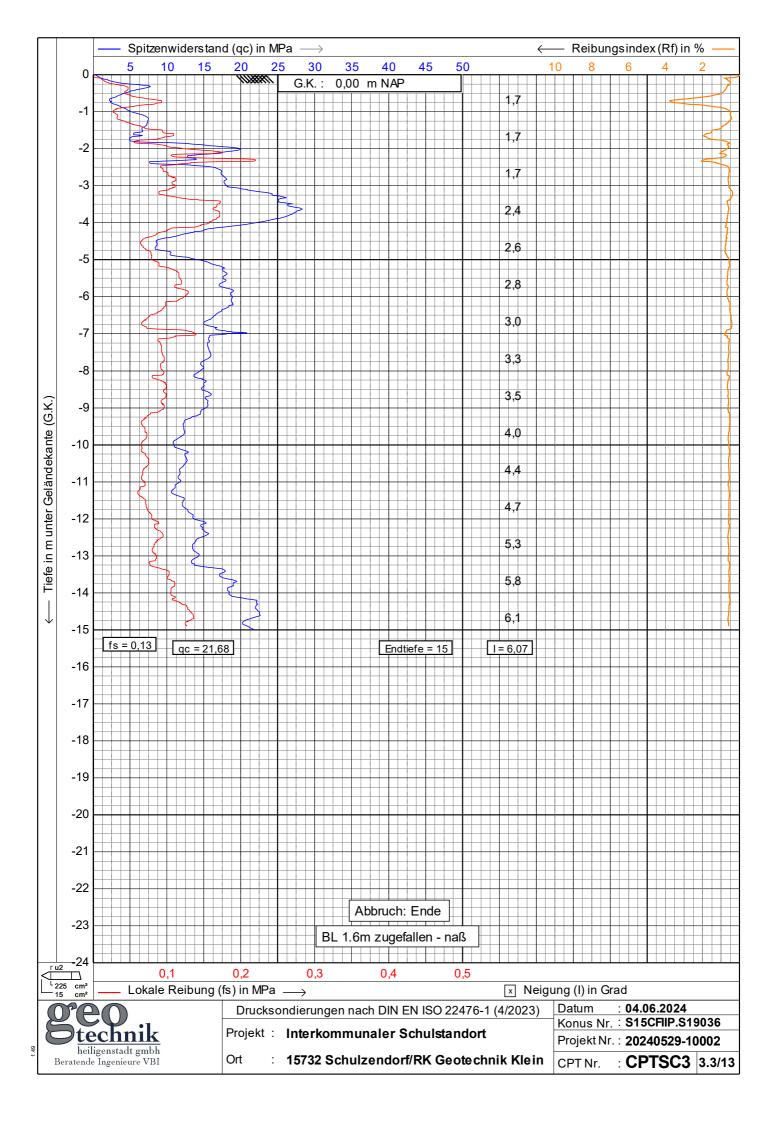


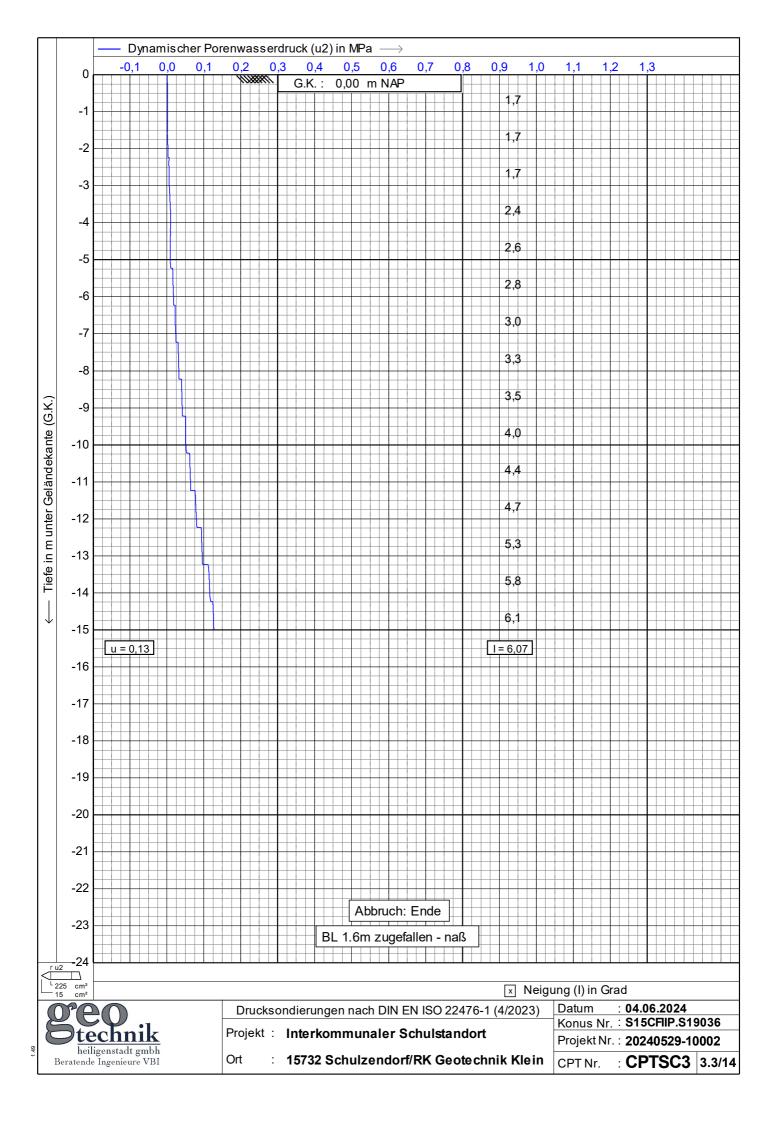
CPT Nr.

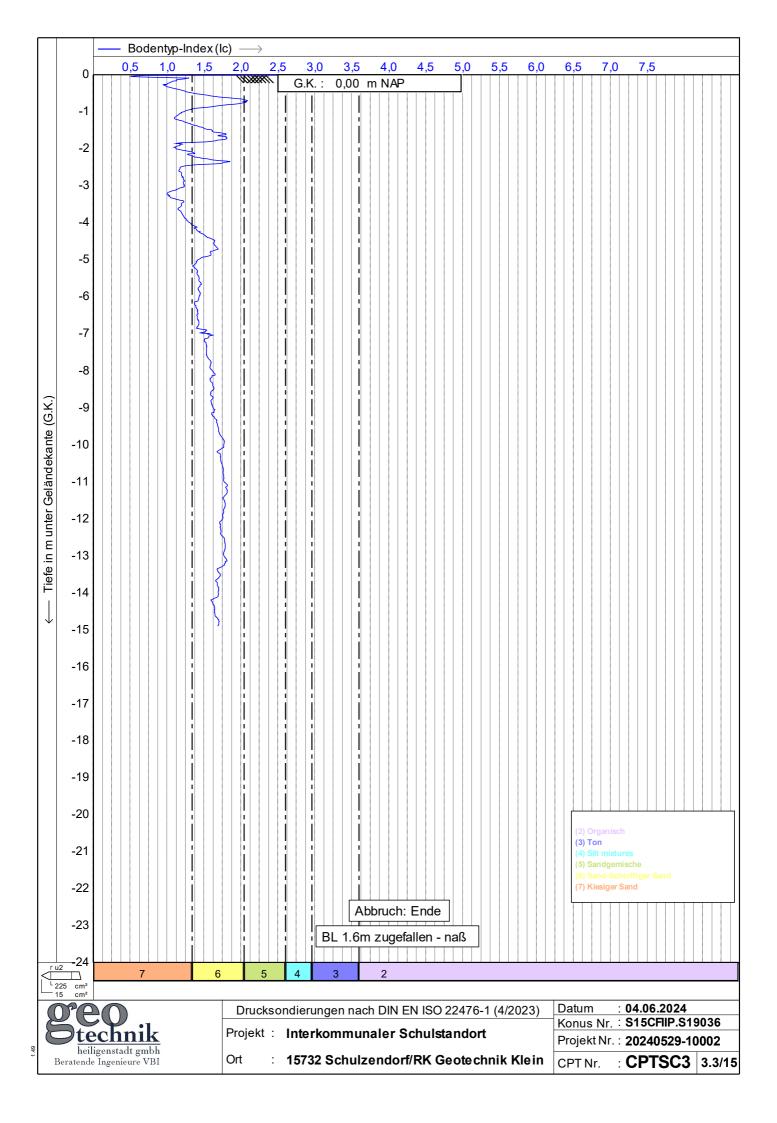


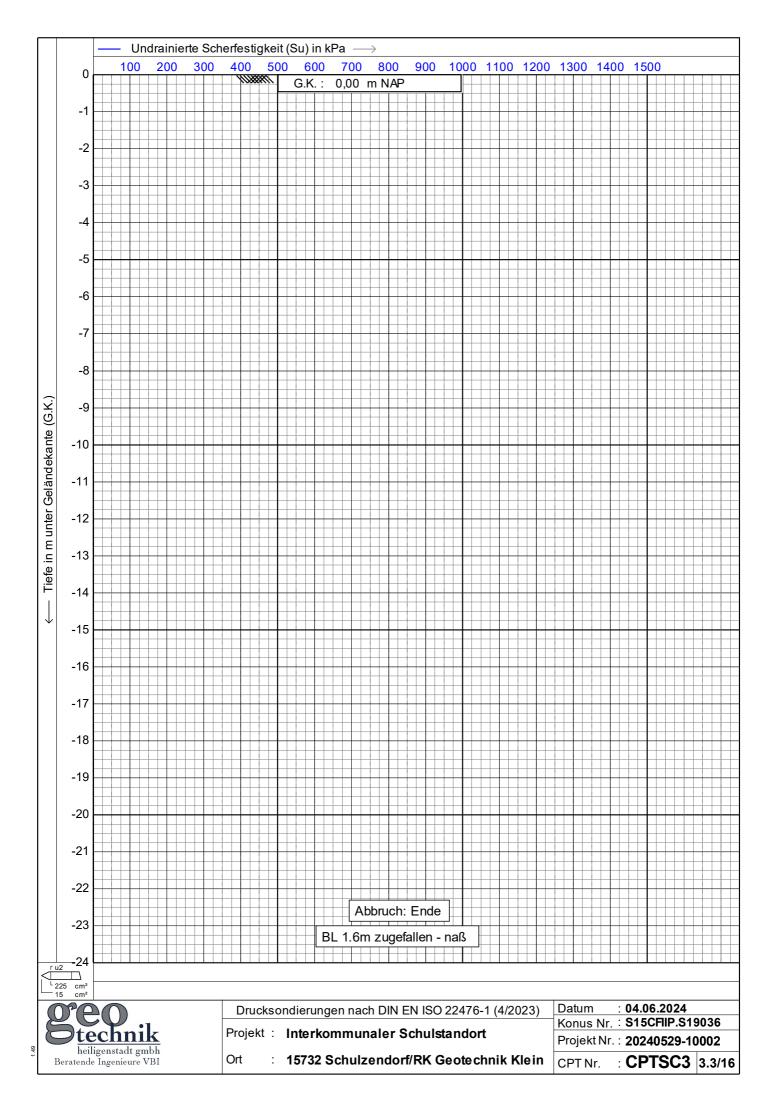


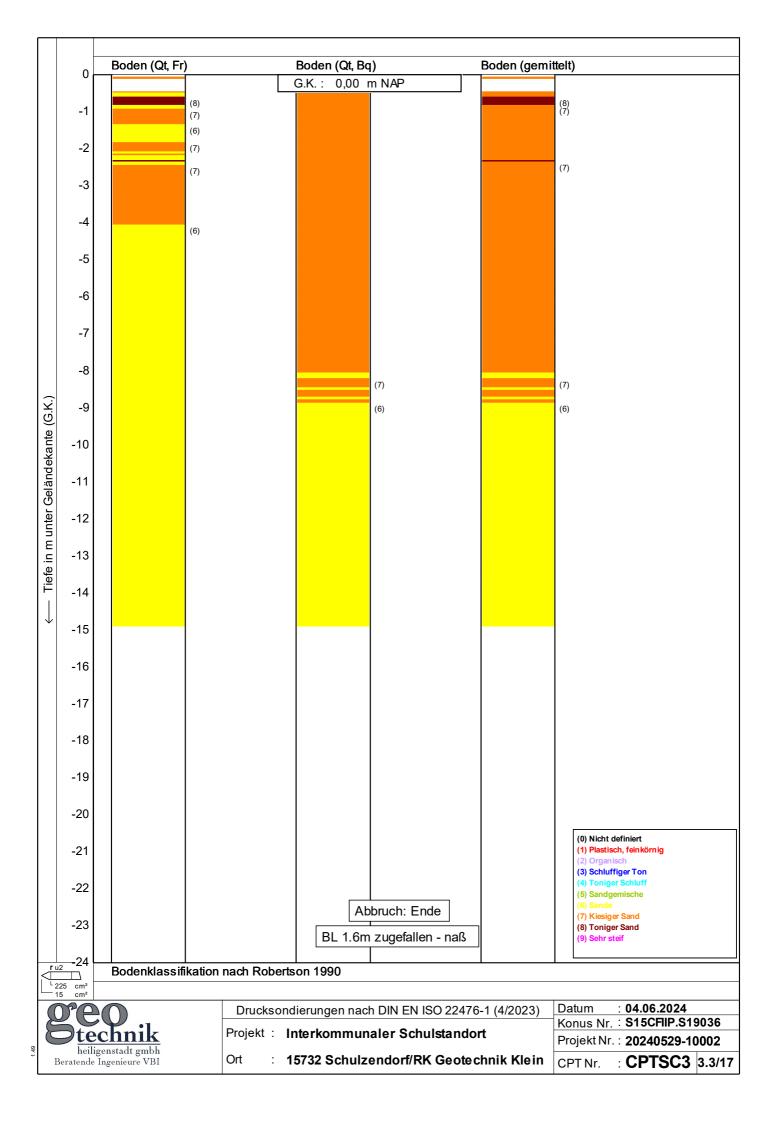
Ort : 15732 Schulzendorf/RK Geotechnik Klein

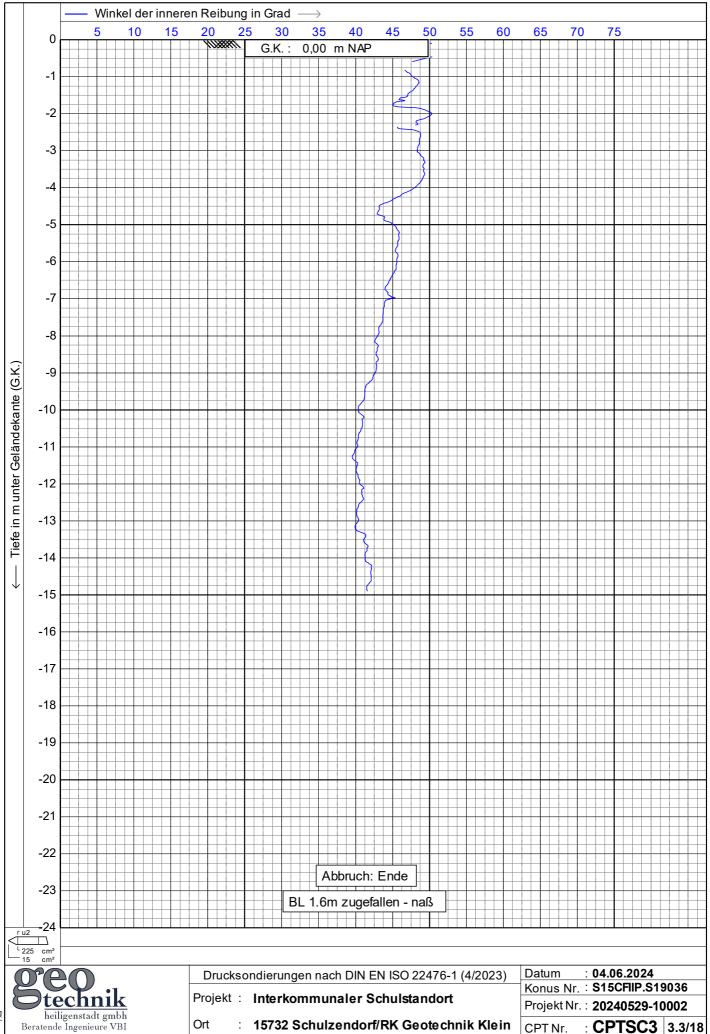

: CPTSC2 3.3/10 CPT Nr.

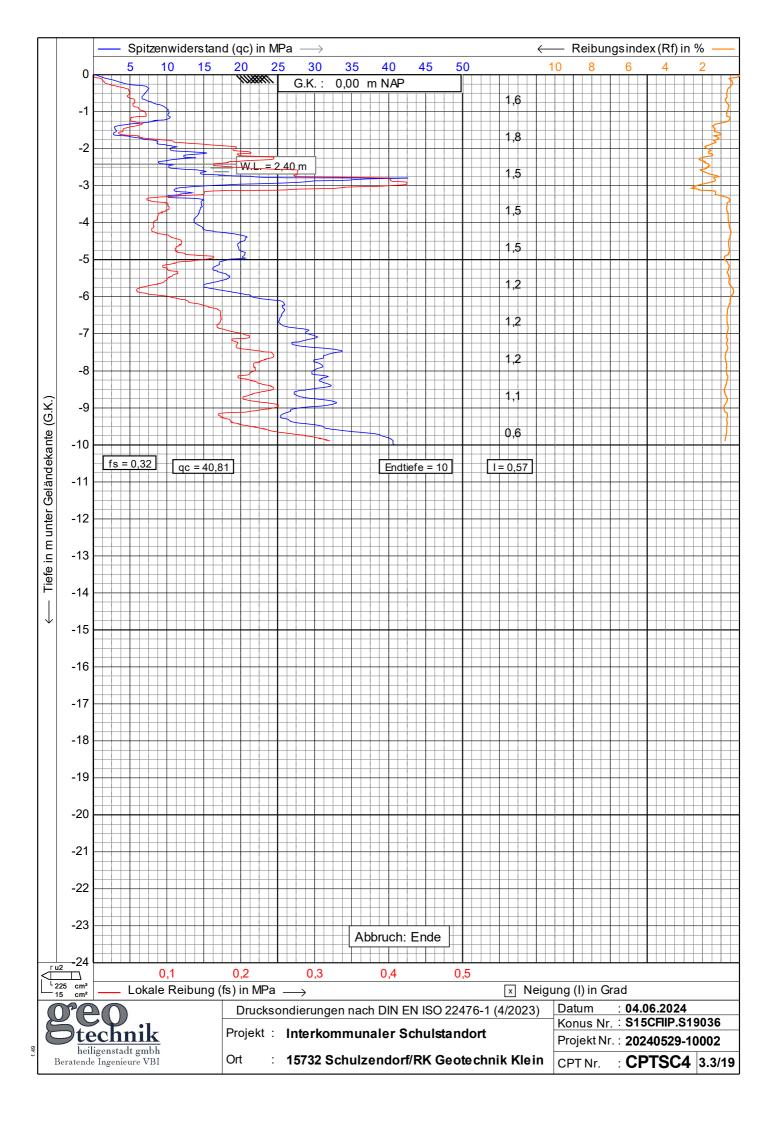


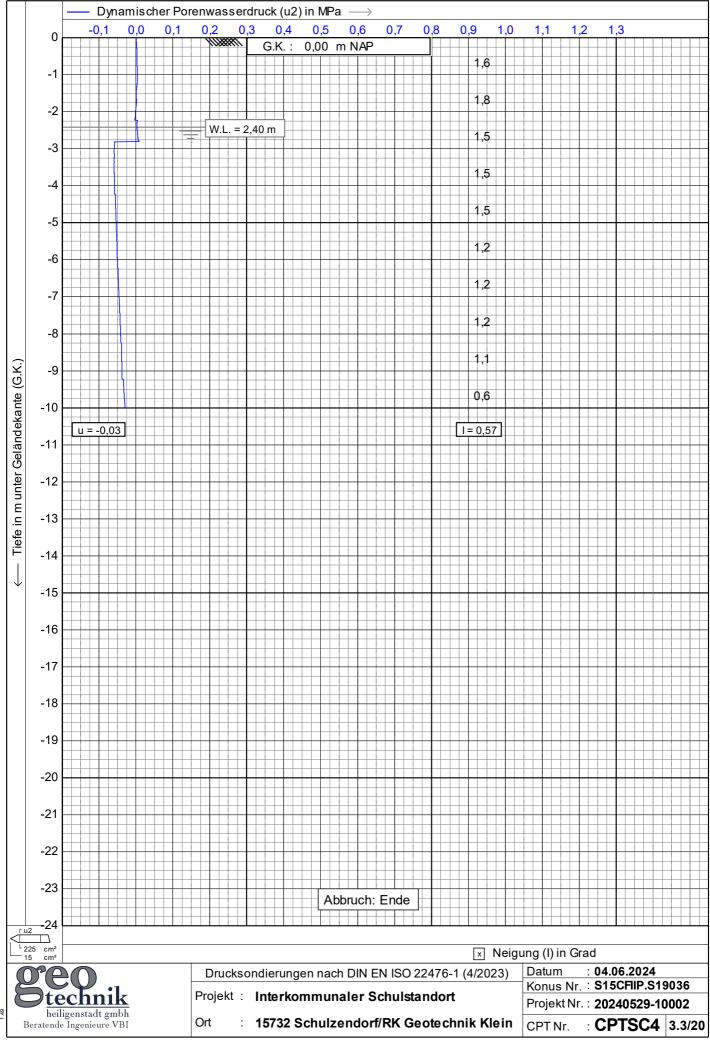


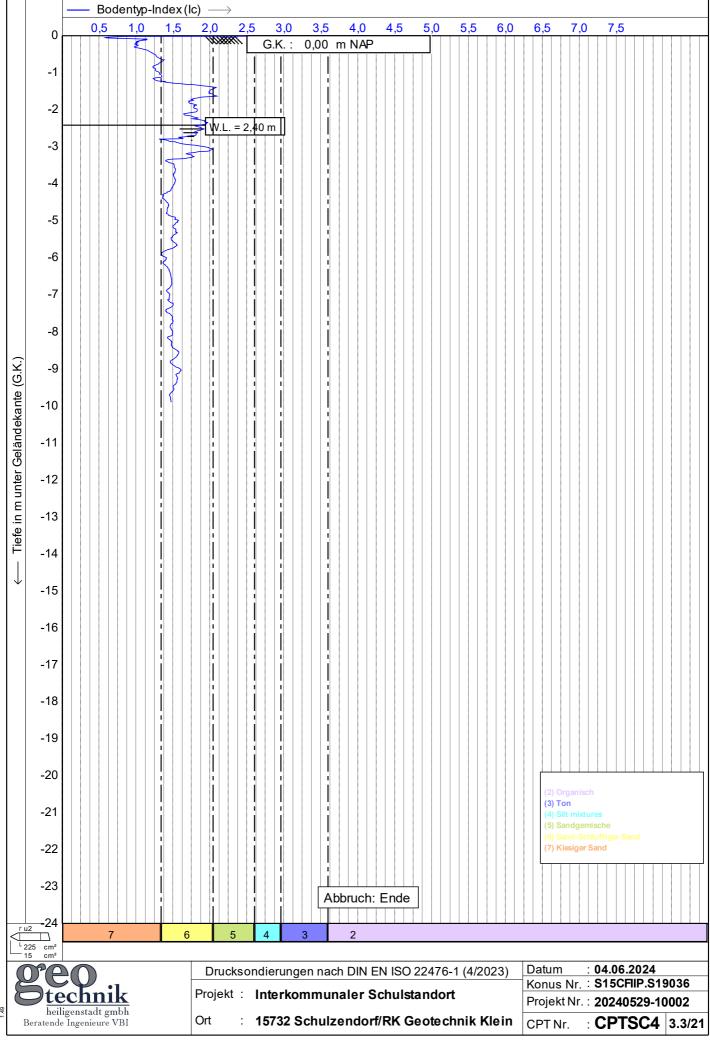

Ort : 15732 Schulzendorf/RK Geotechnik Klein

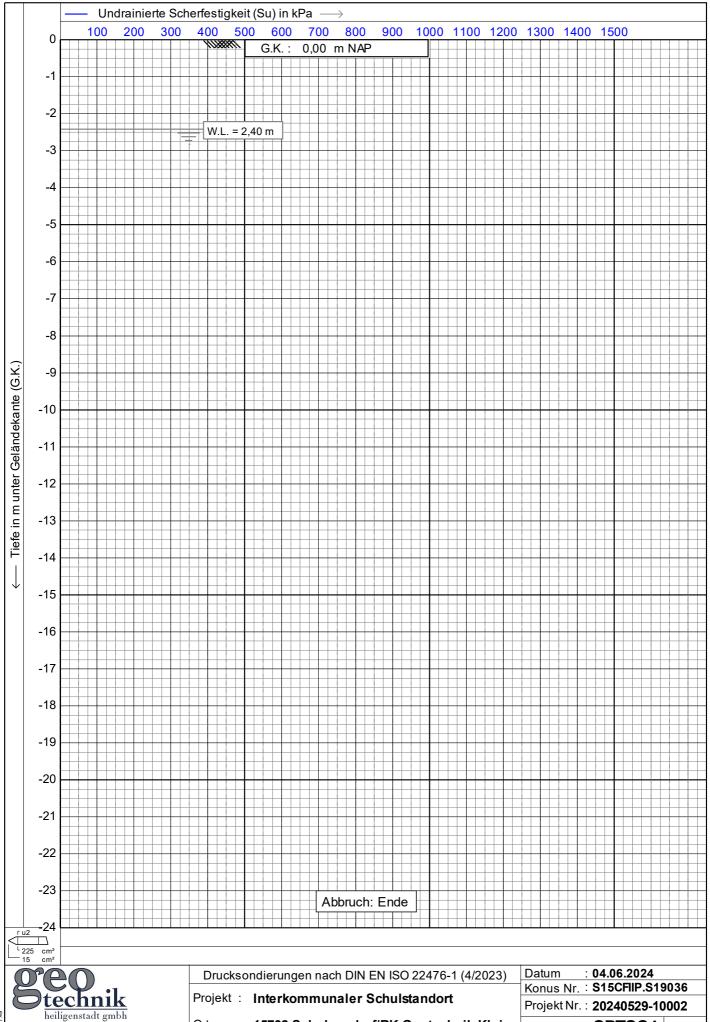

: CPTSC2 | 3.3/12 CPT Nr.



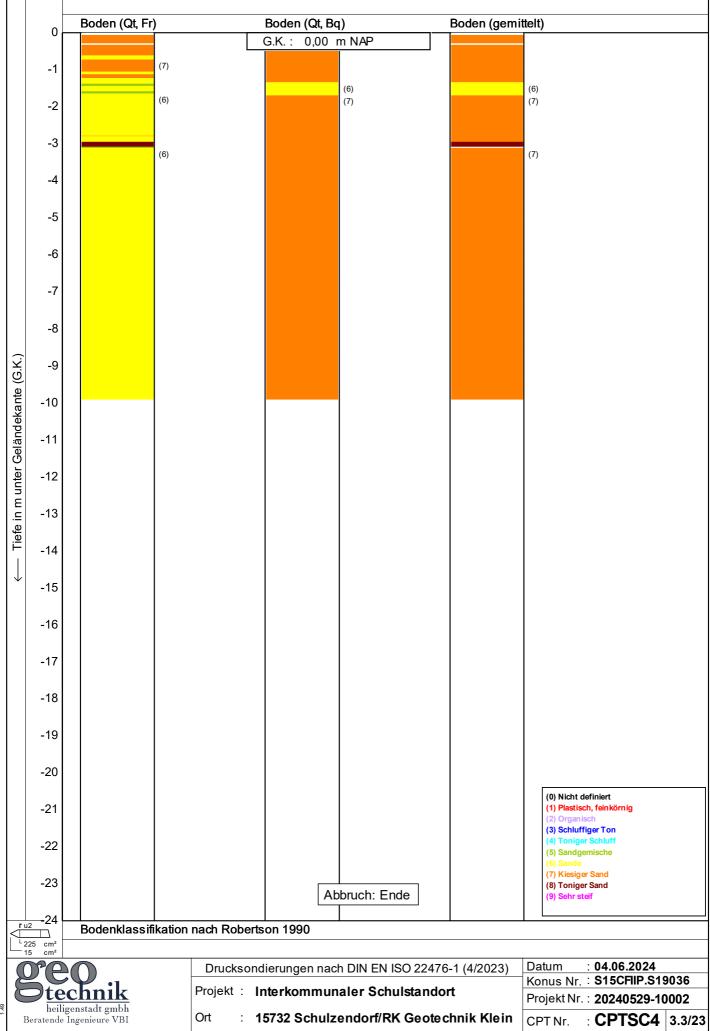


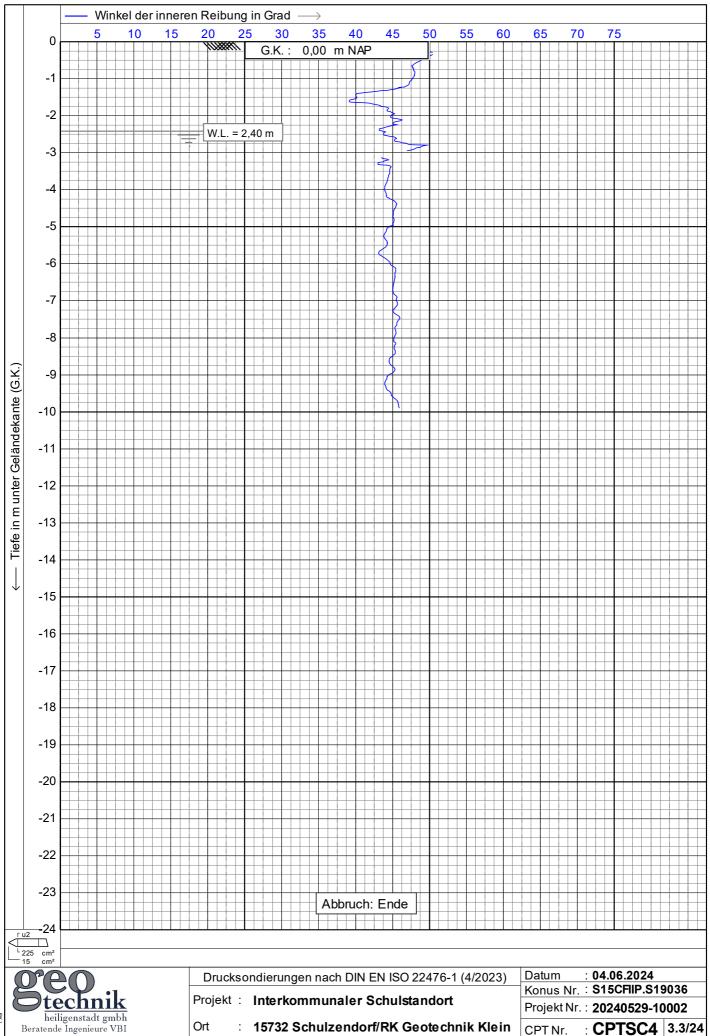


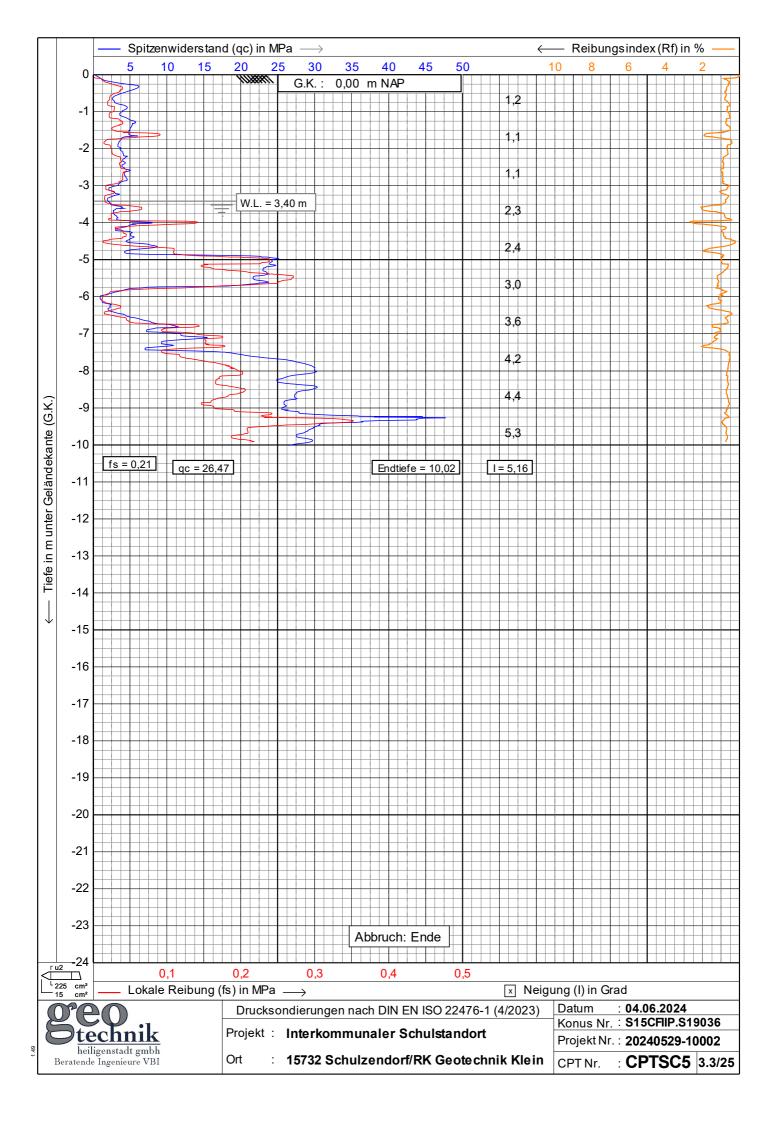




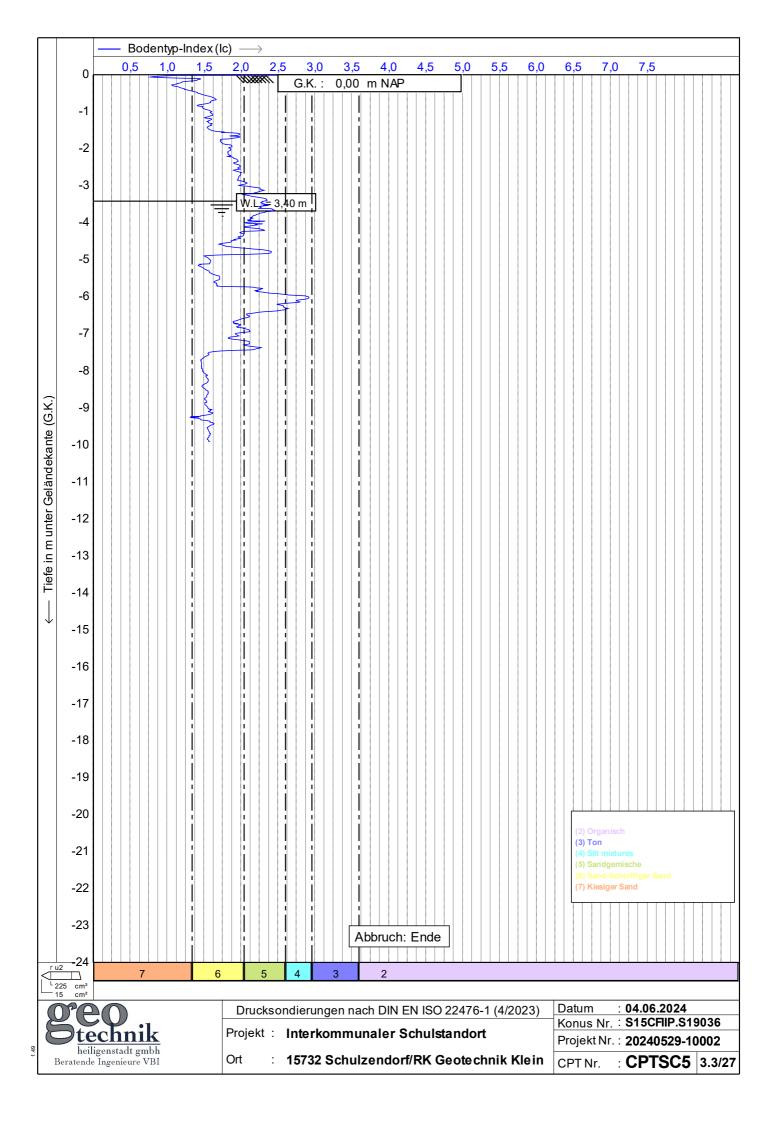
CPT Nr.

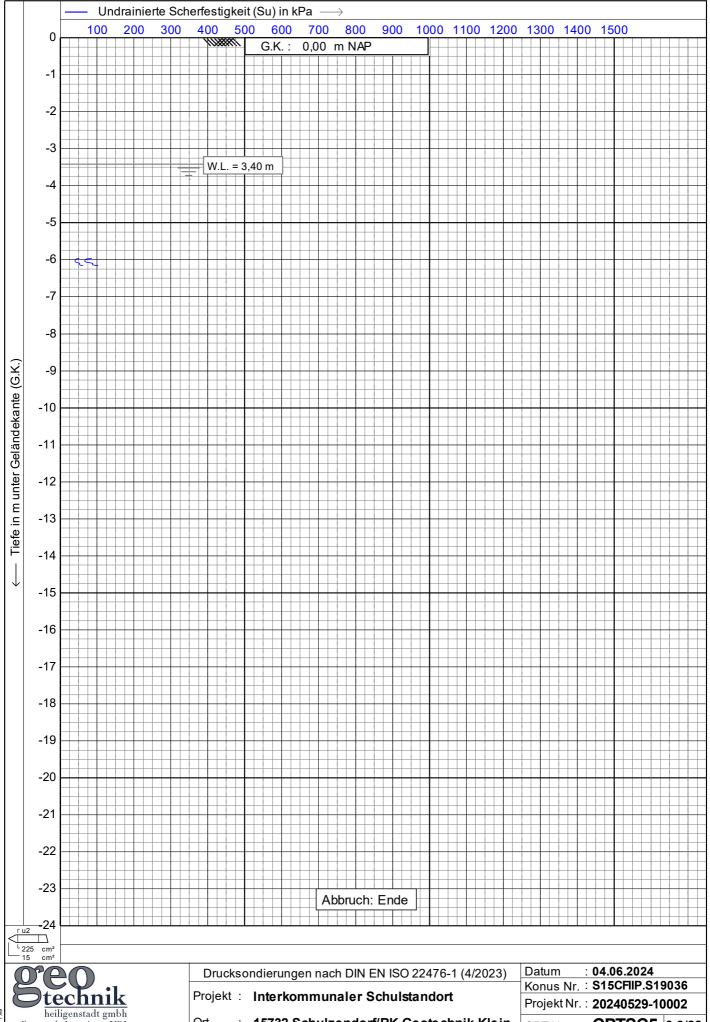


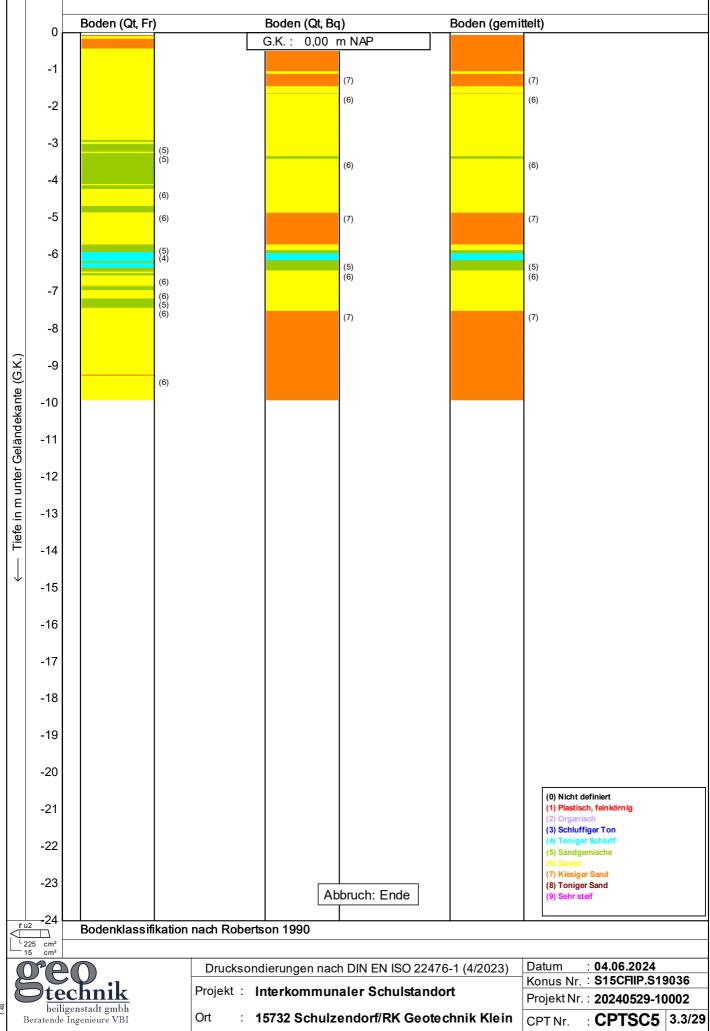


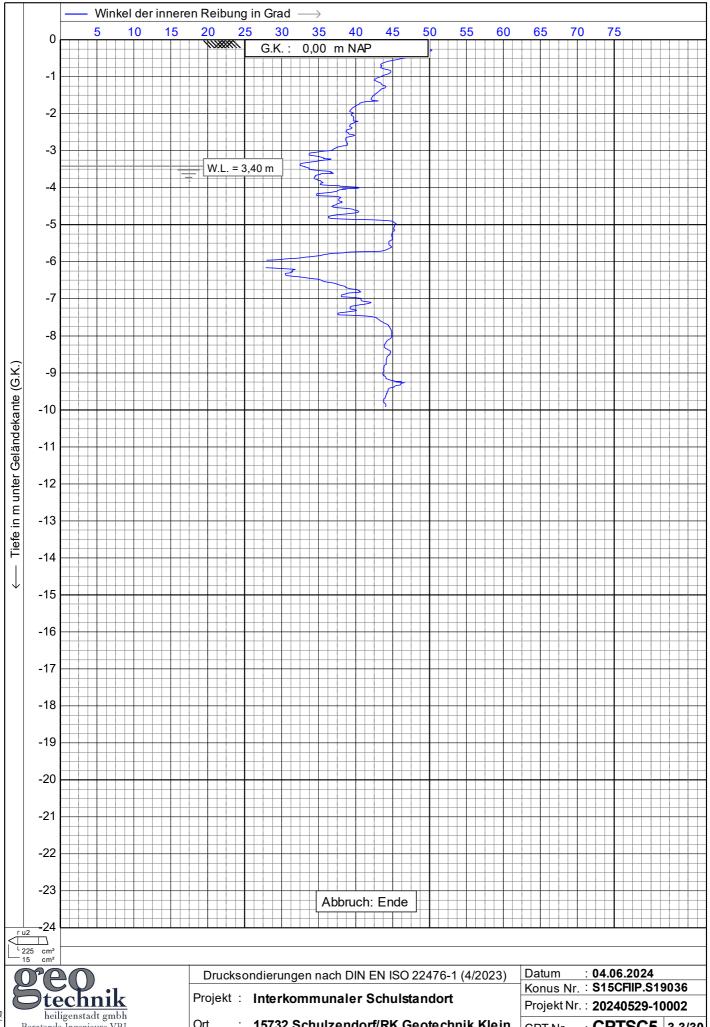


Ort : 15732 Schulzendorf/RK Geotechnik Klein

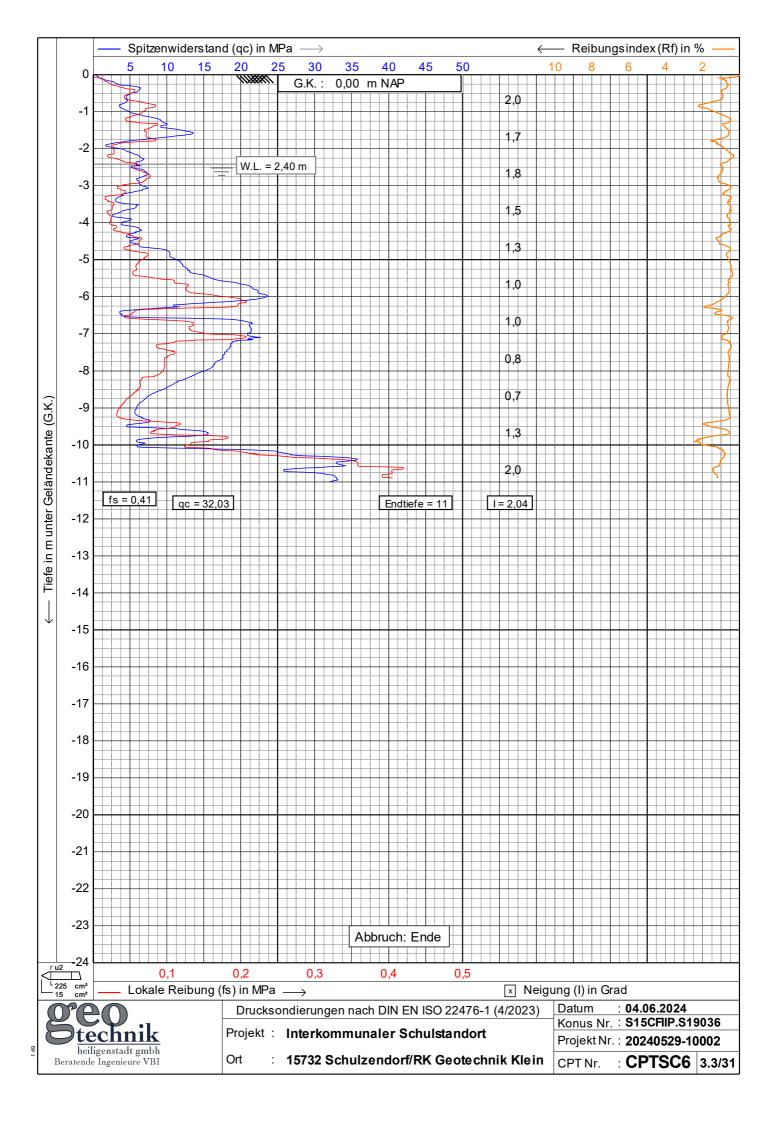

: CPTSC4 3.3/22 CPT Nr.

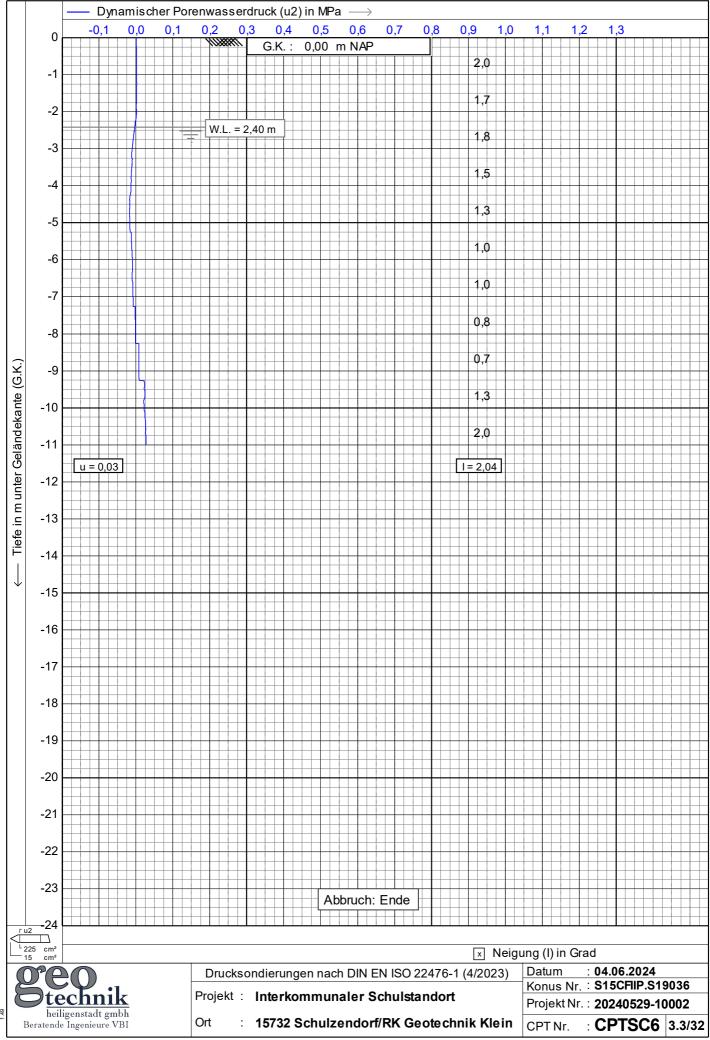


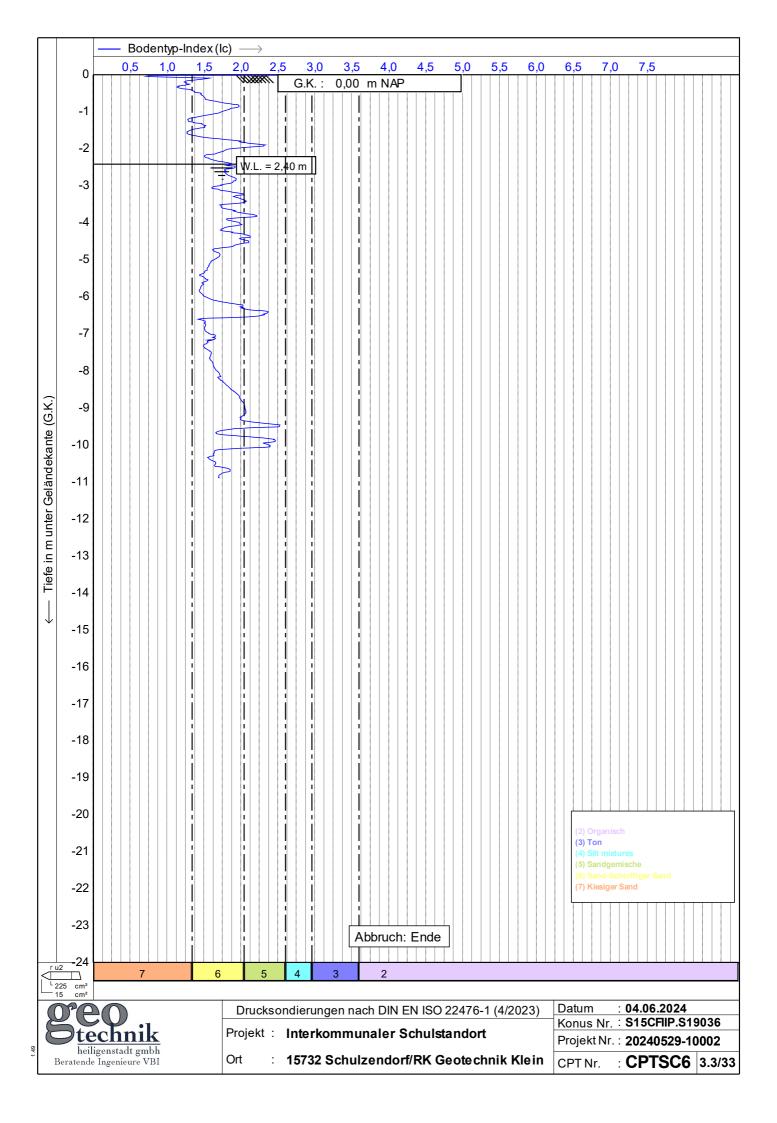


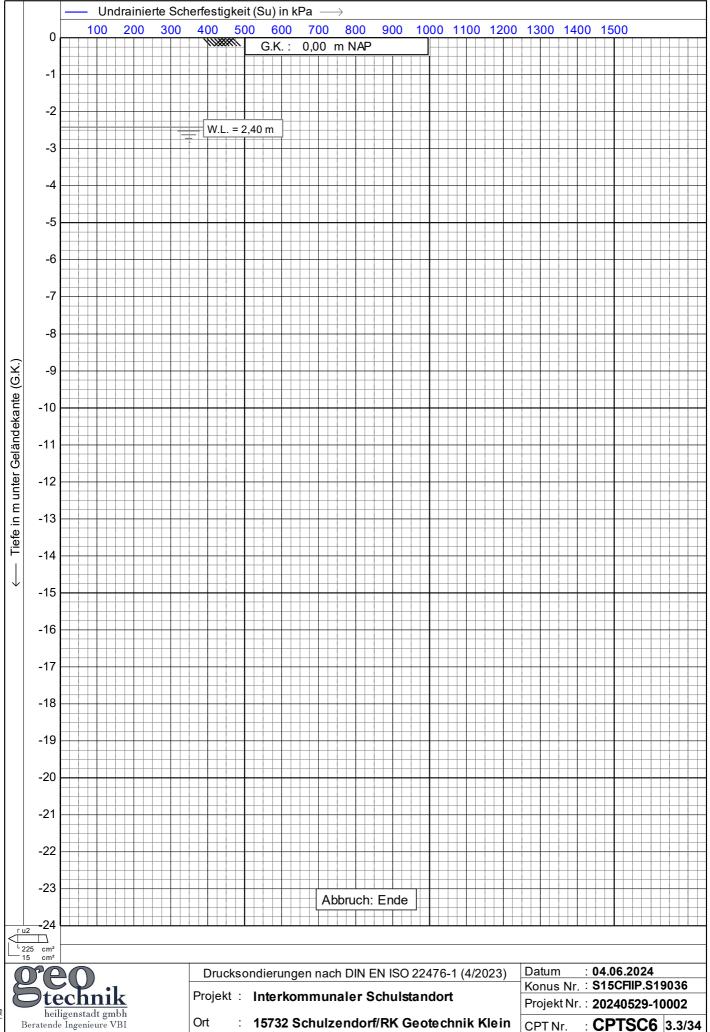


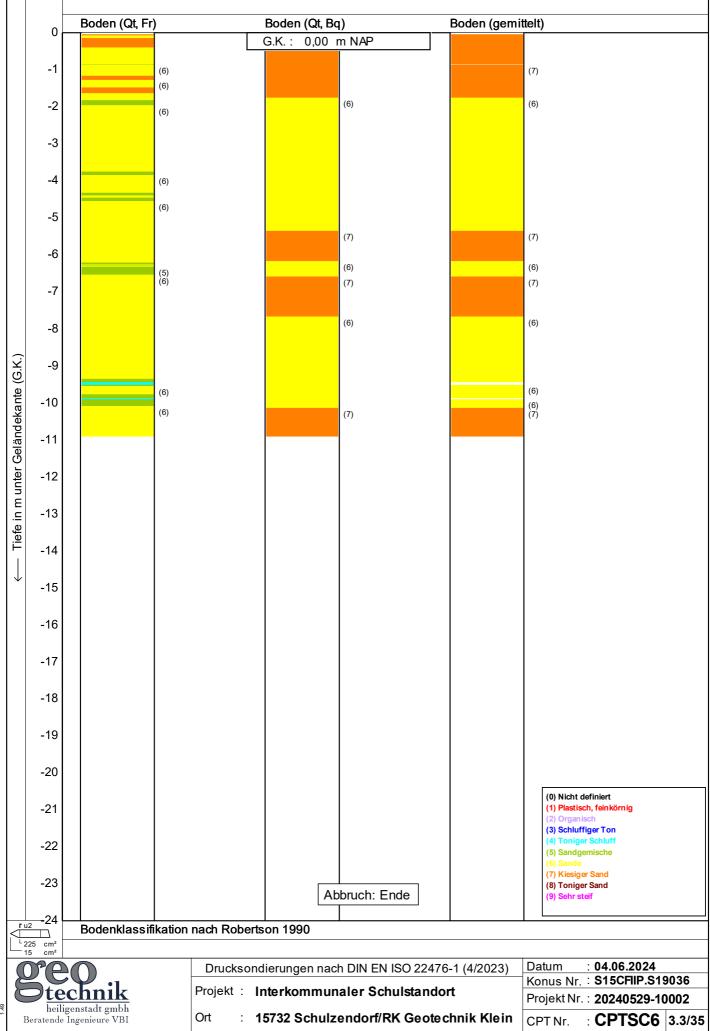
Ort : 15732 Schulzendorf/RK Geotechnik Klein

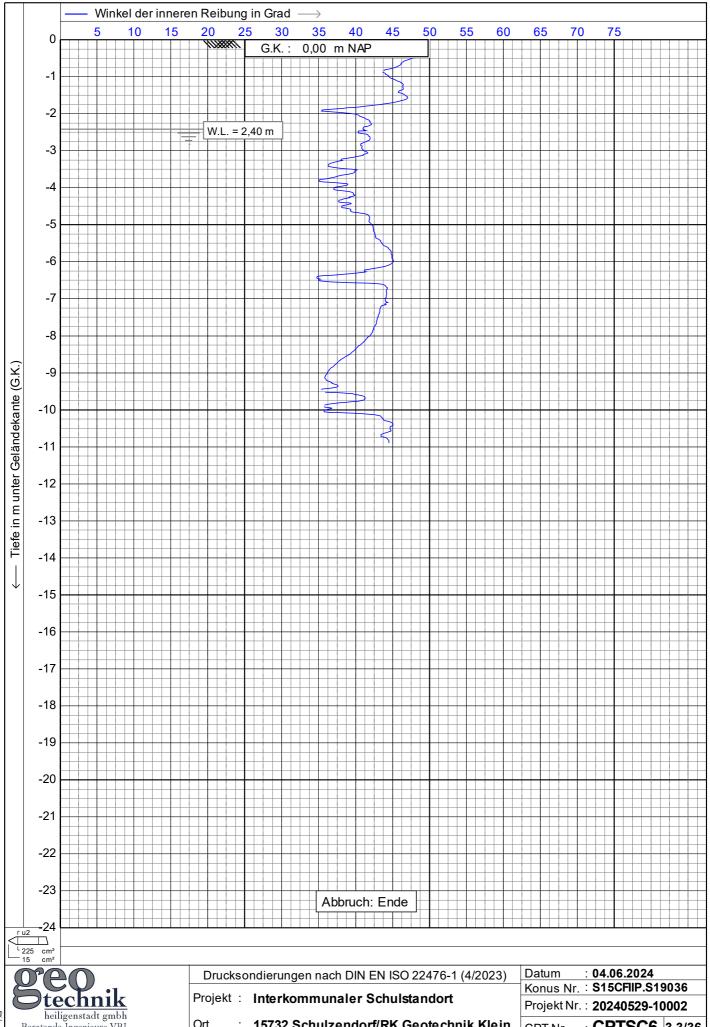

: CPTSC5 3.3/28 CPT Nr.

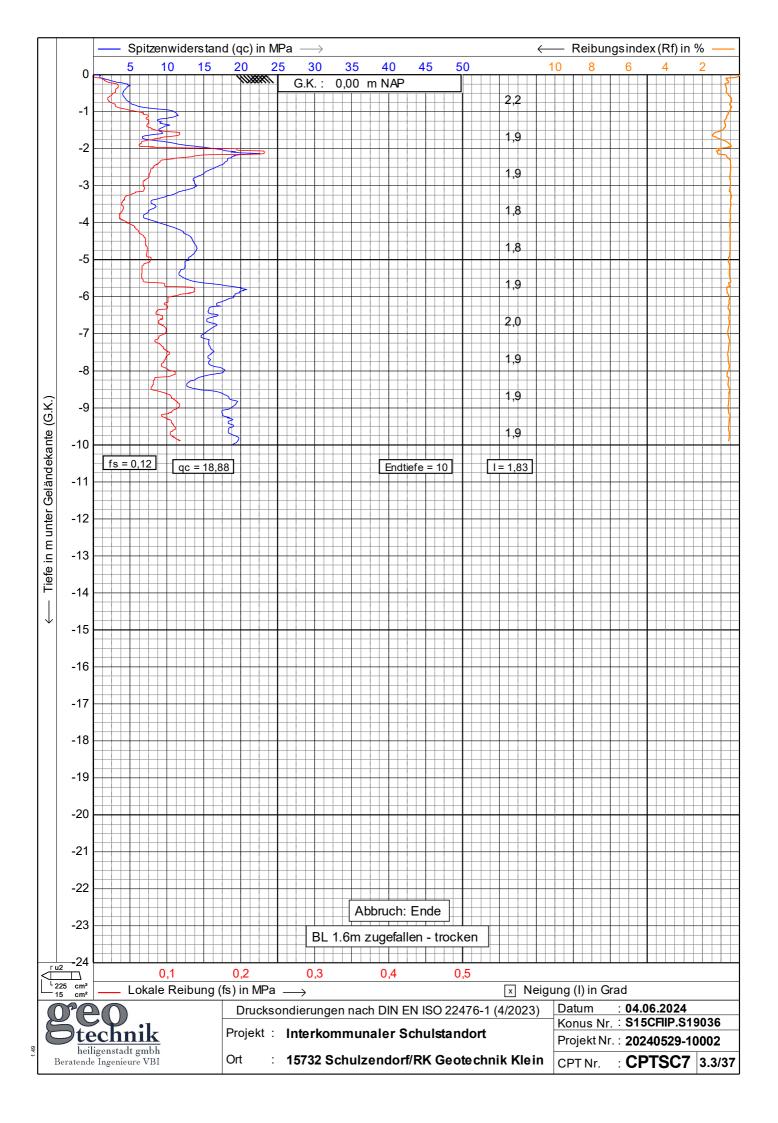


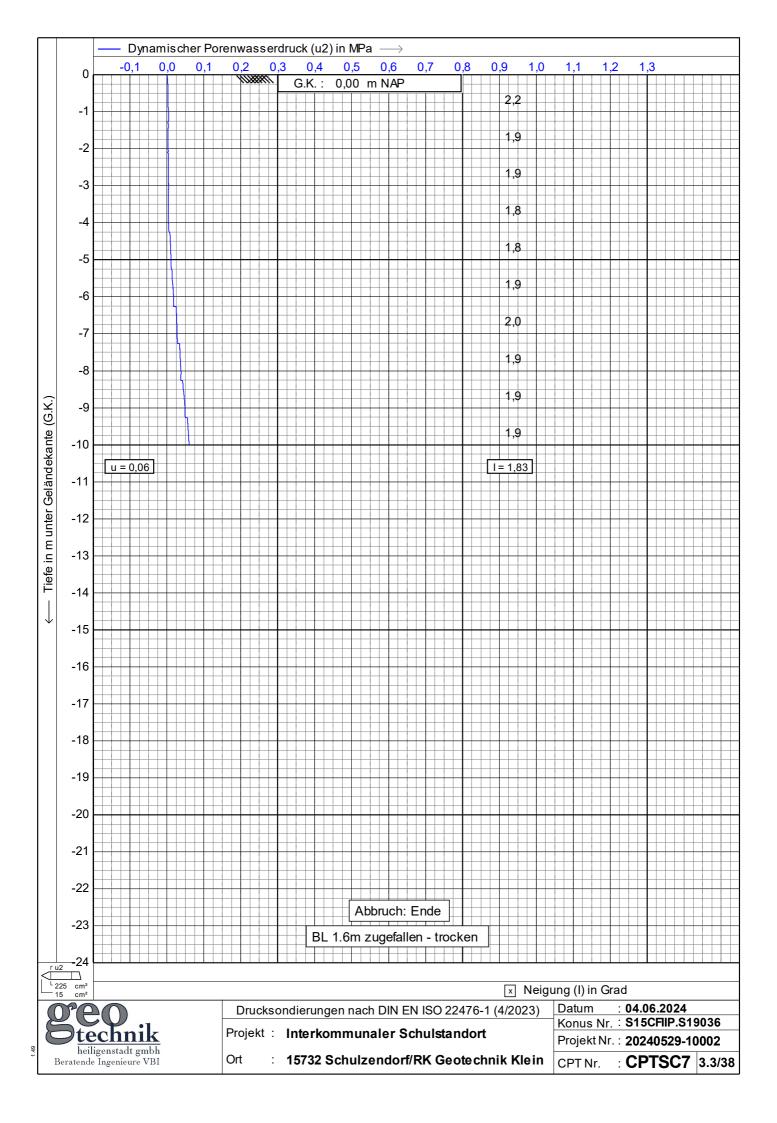


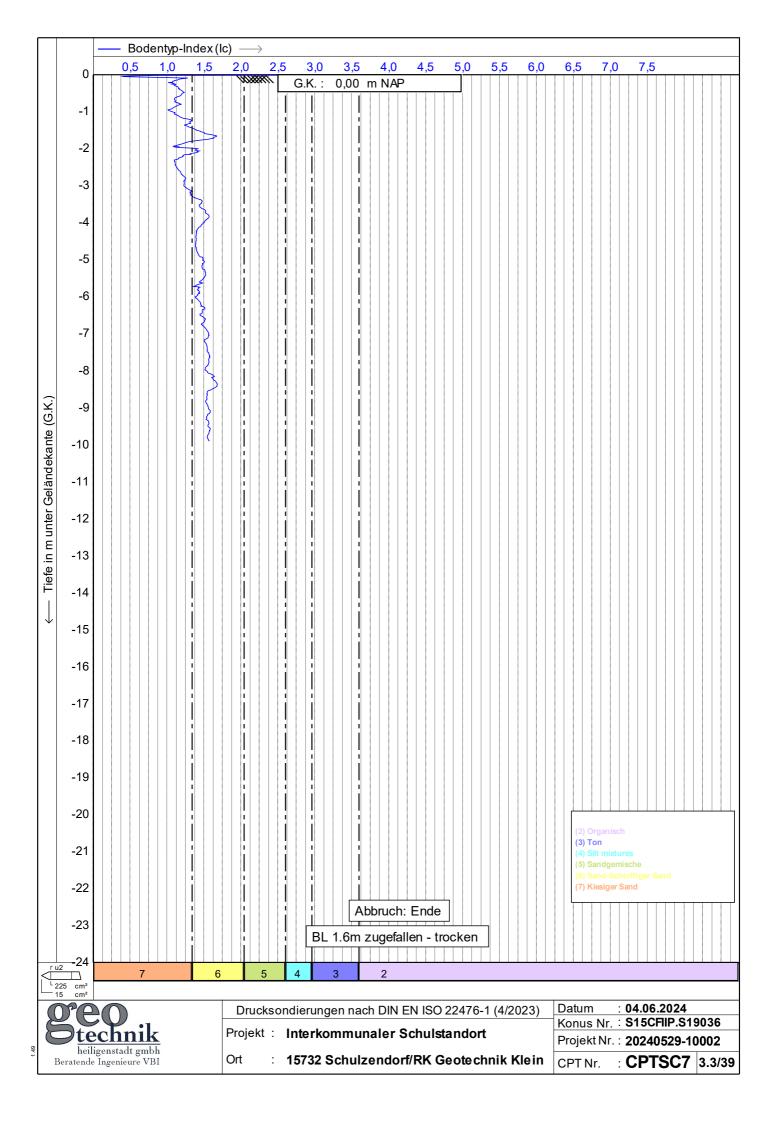

Ort : 15732 Schulzendorf/RK Geotechnik Klein

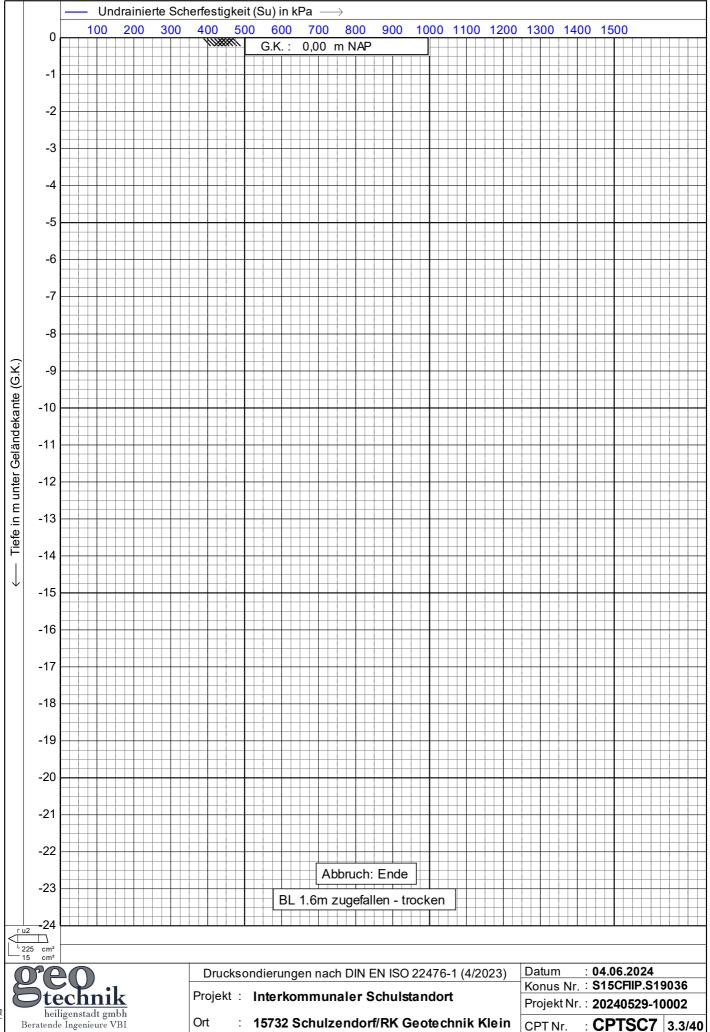

: CPTSC5 3.3/30 CPT Nr.

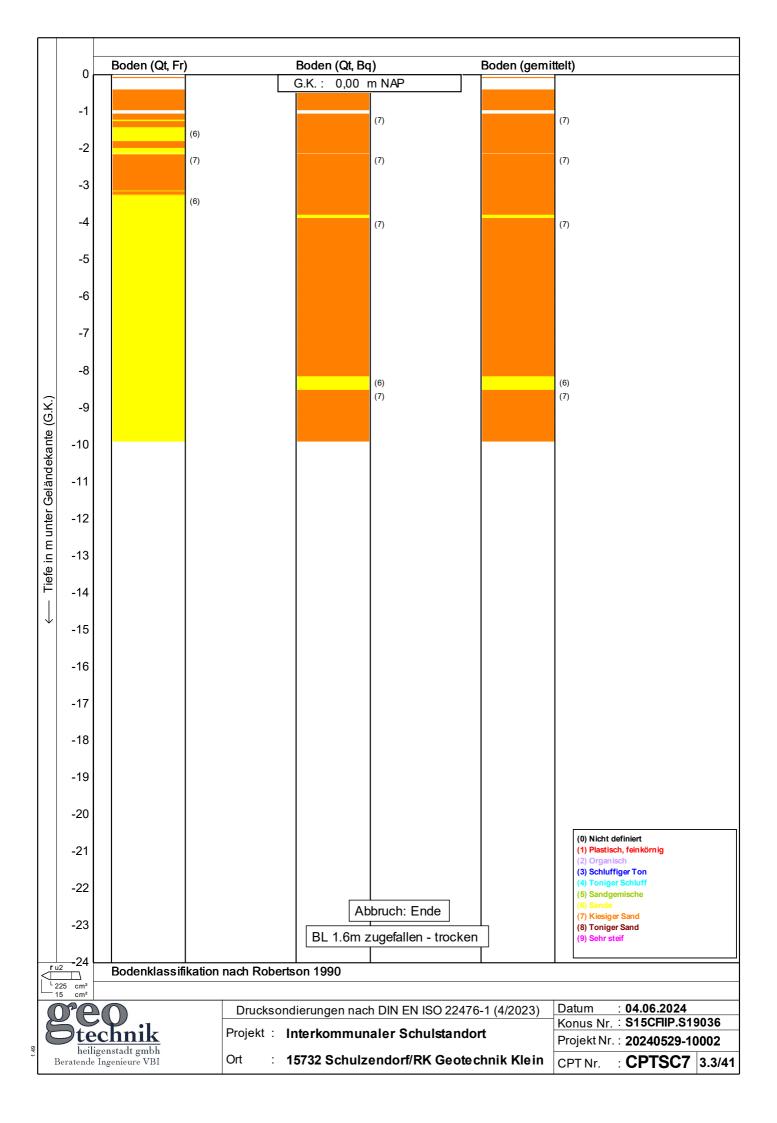


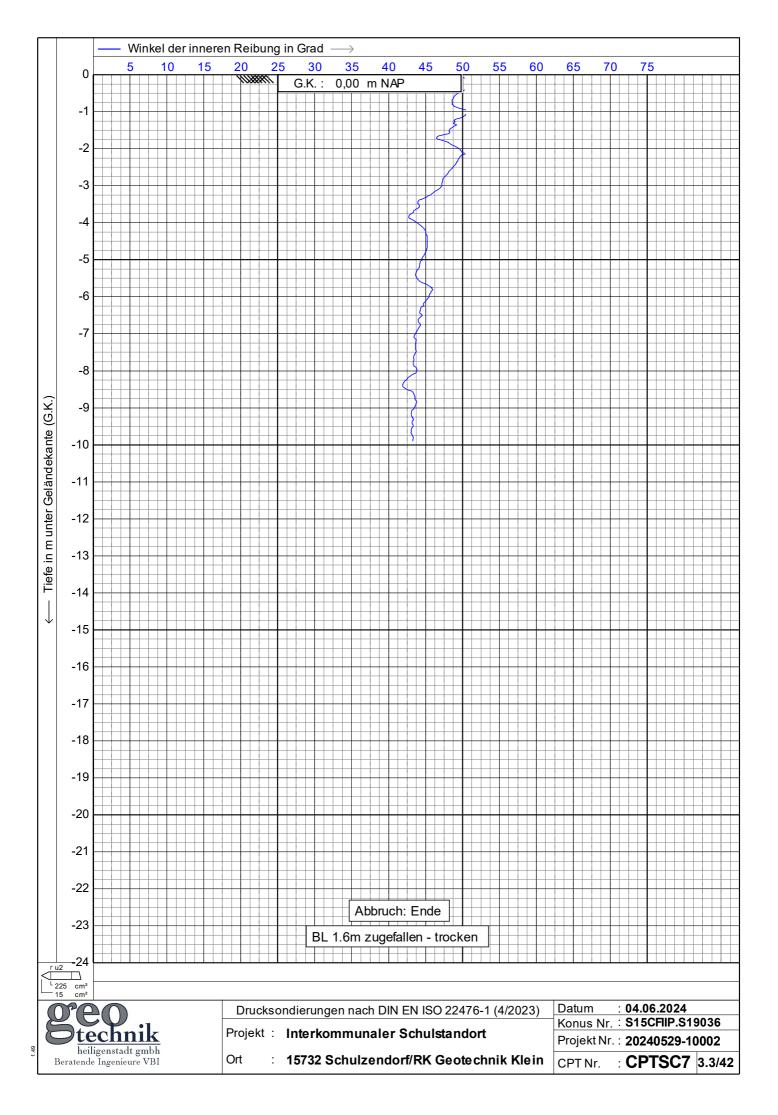


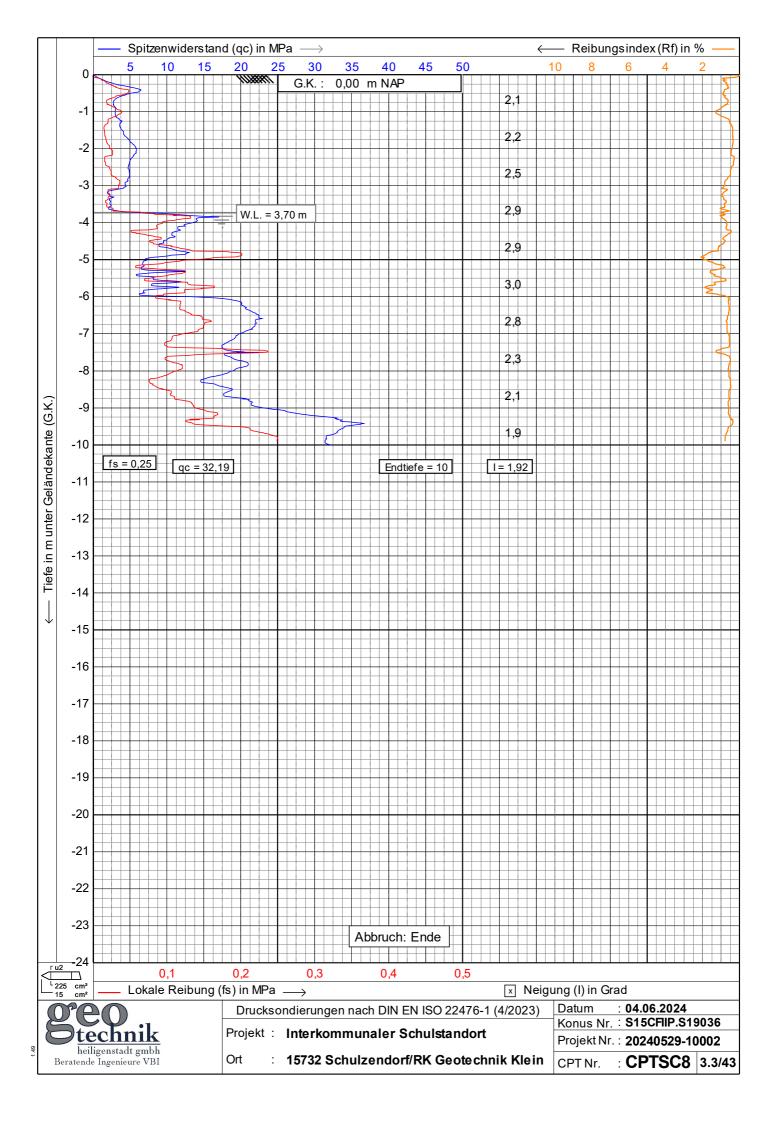


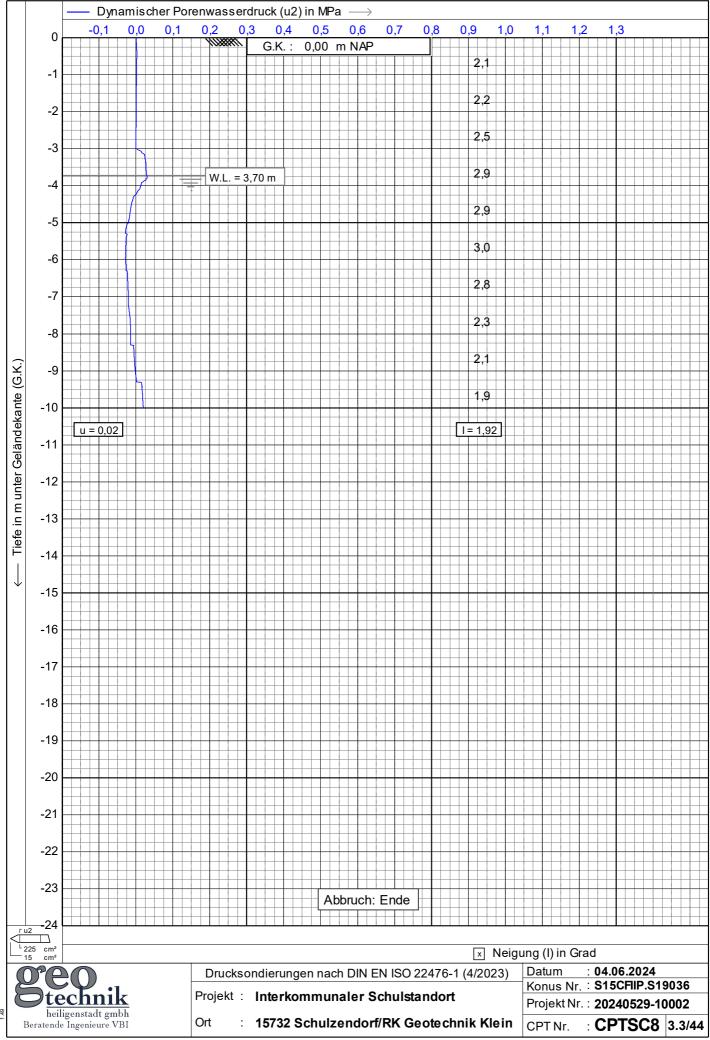


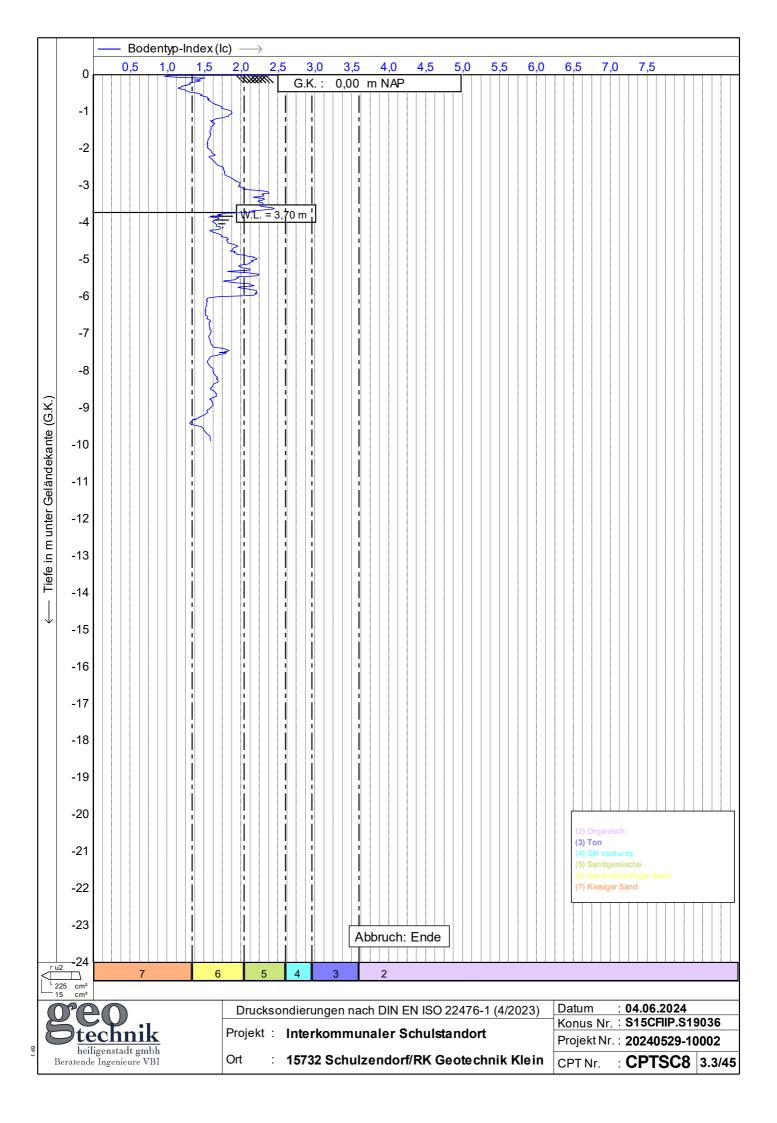

Ort : 15732 Schulzendorf/RK Geotechnik Klein

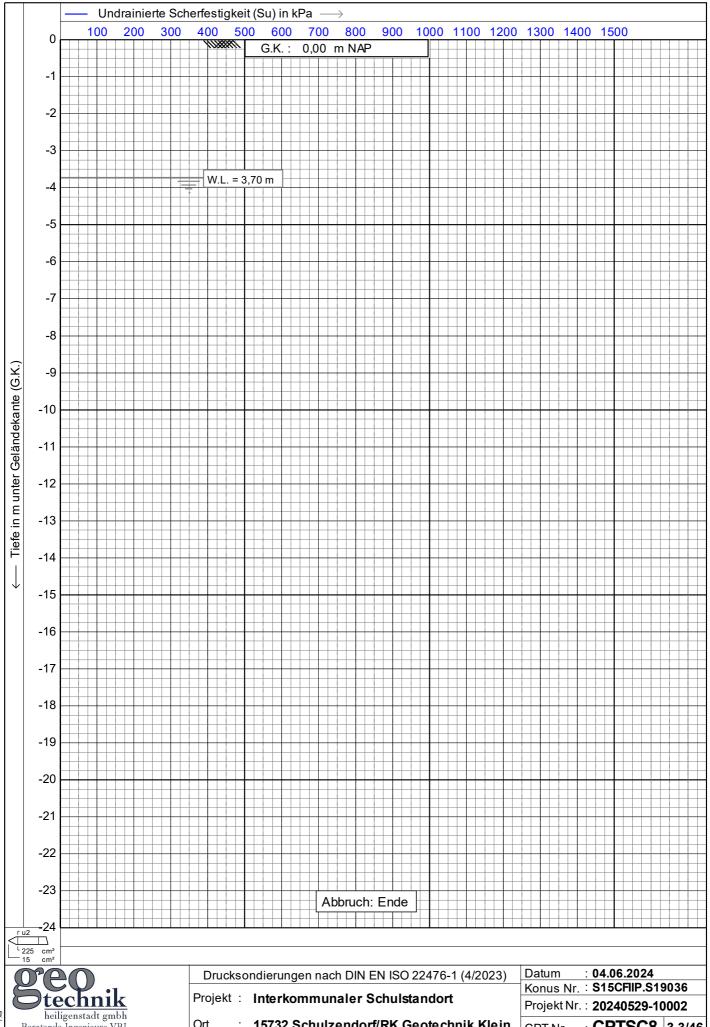

: CPTSC6 3.3/36 CPT Nr.

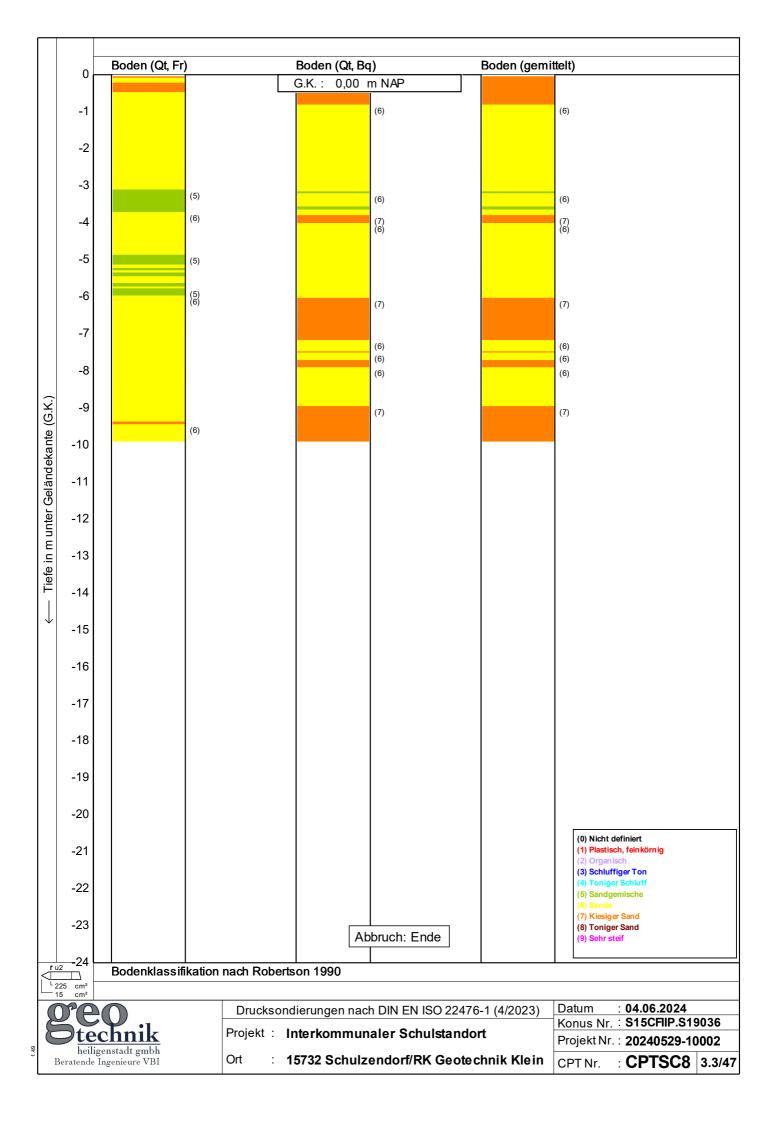


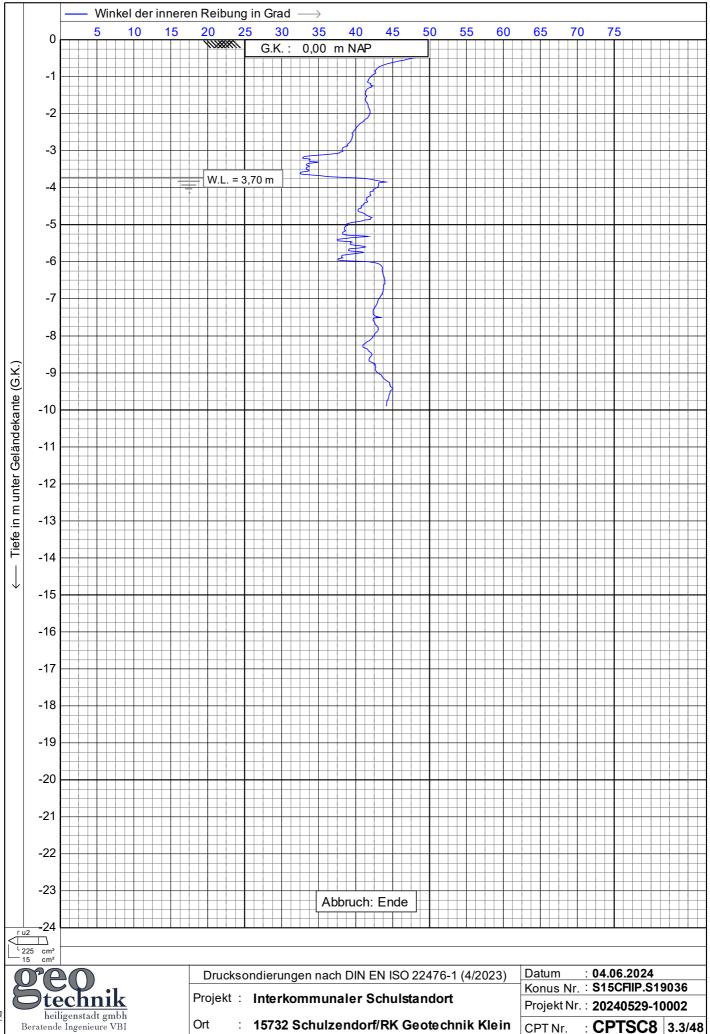


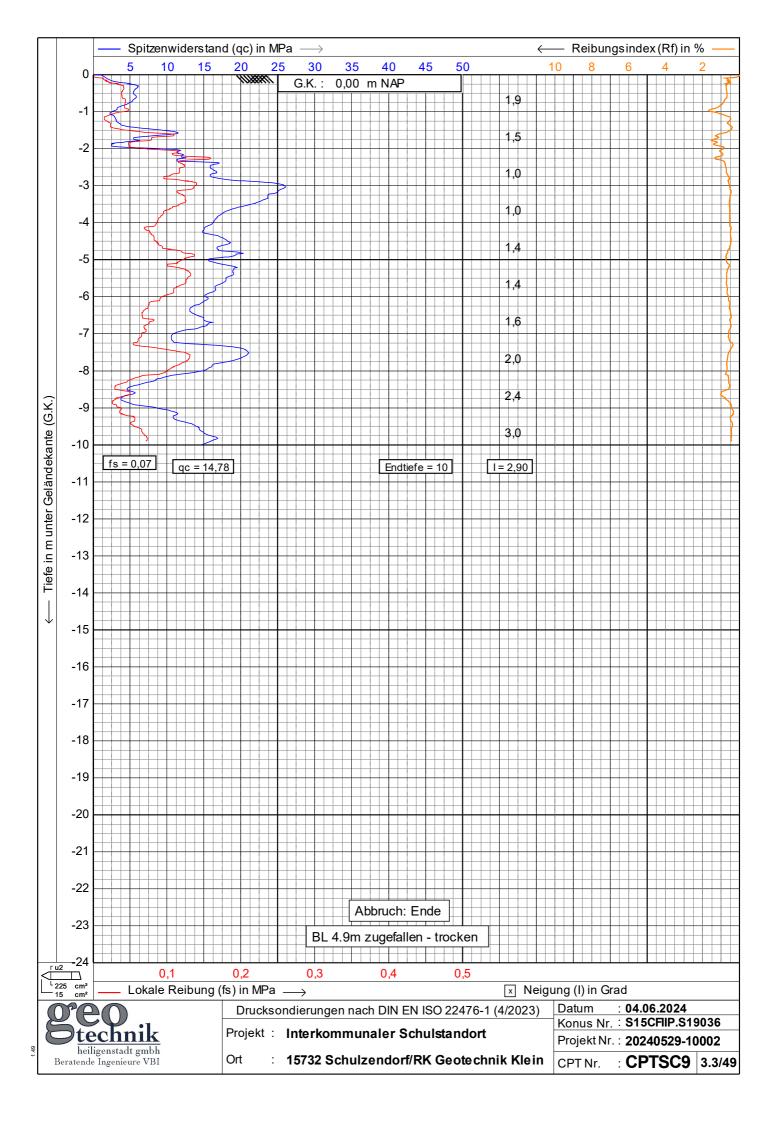


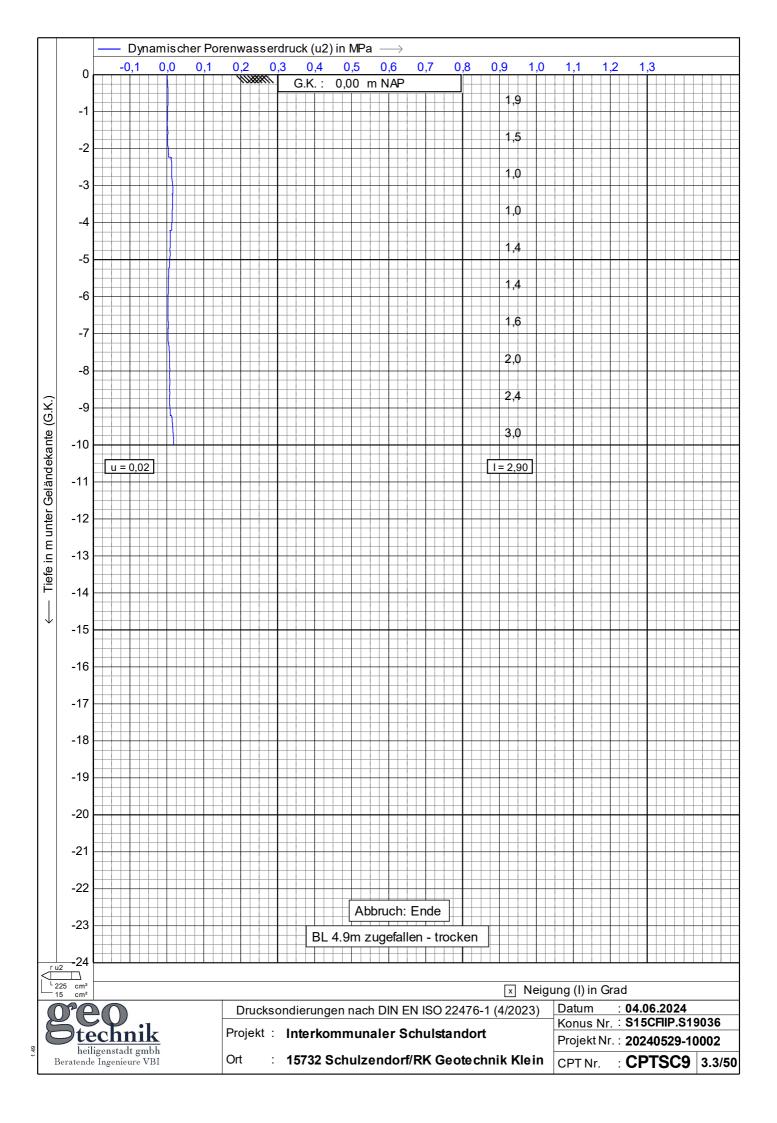


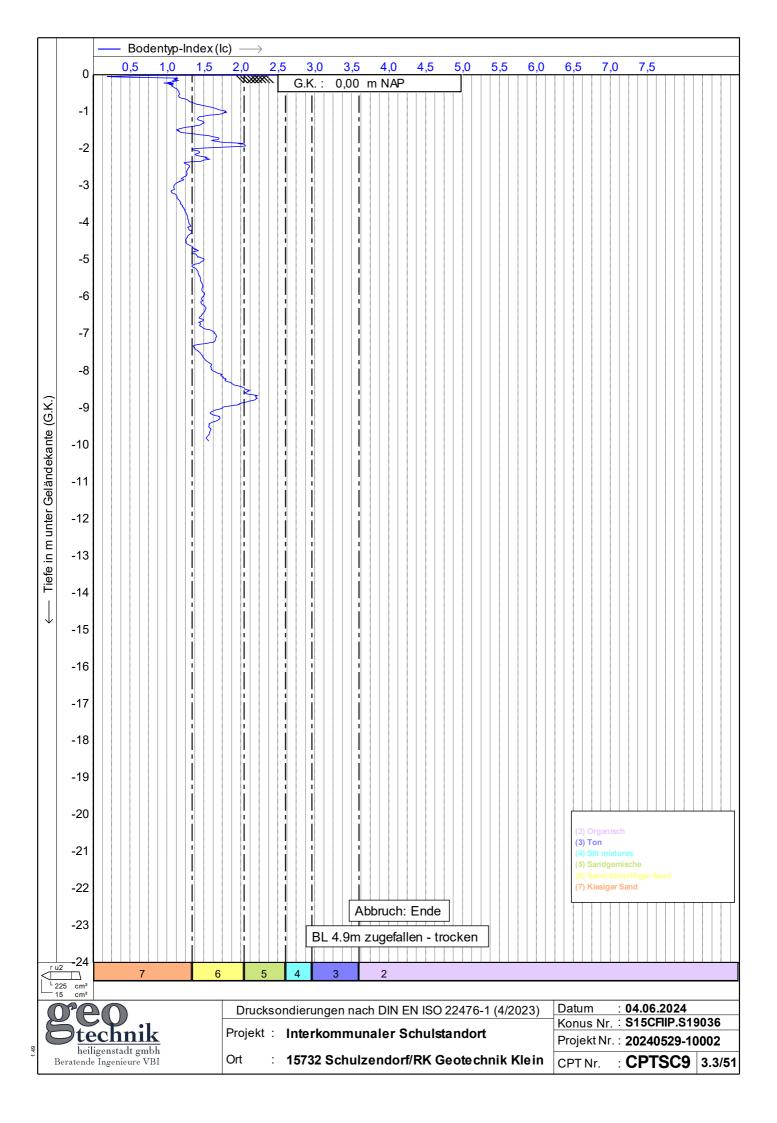


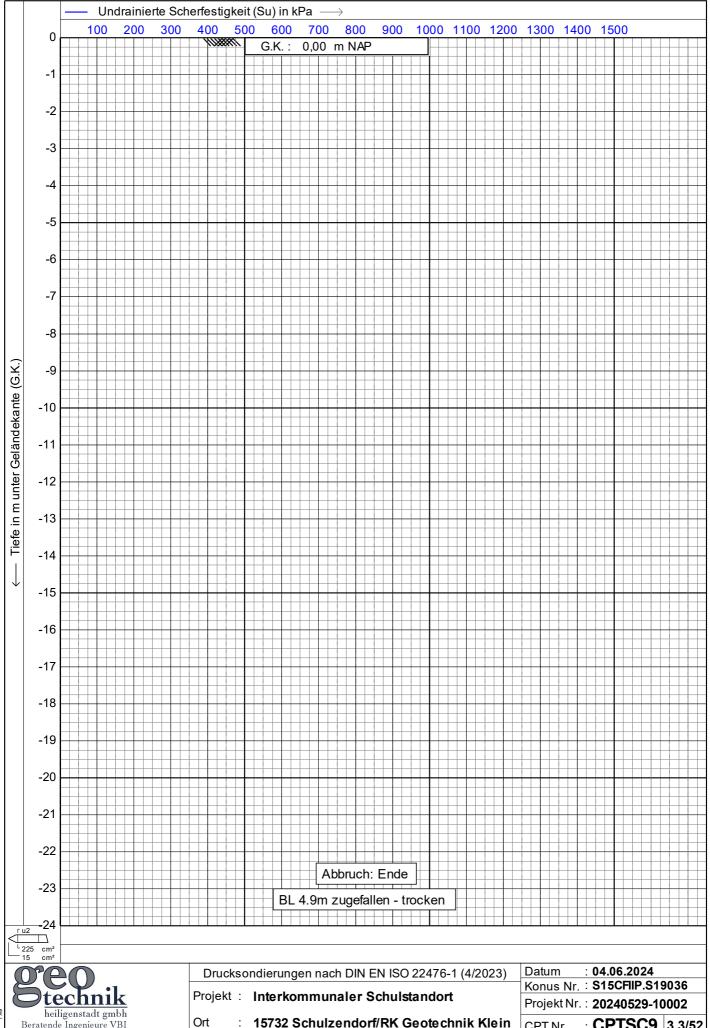


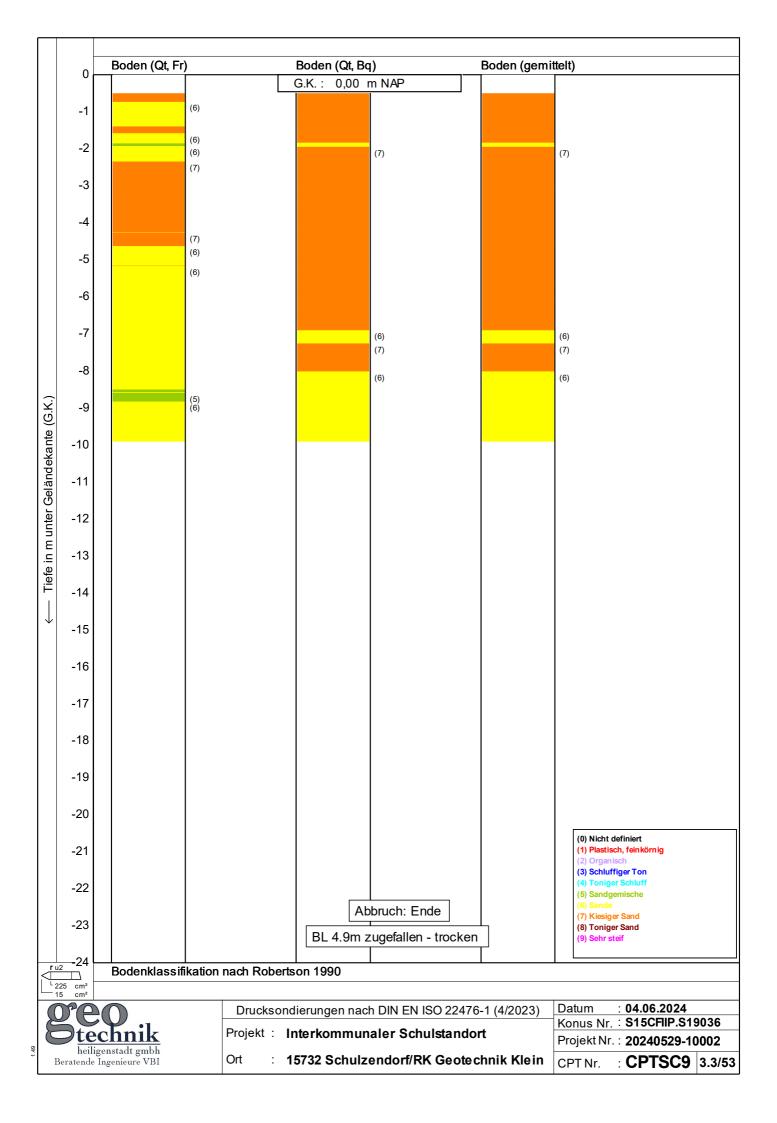


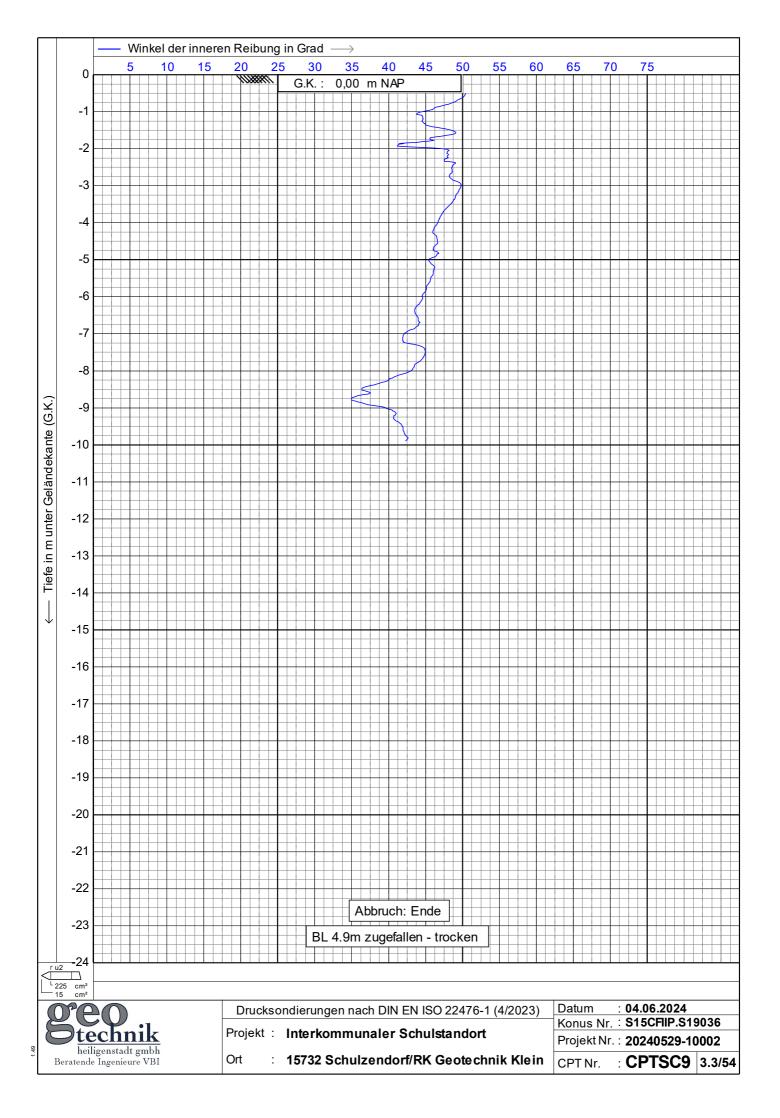



Ort : 15732 Schulzendorf/RK Geotechnik Klein


: CPTSC8 3.3/46 CPT Nr.







: CPTSC9 3.3/52 CPT Nr.

Prüfungsnr.: RK-006042024c1

Anlage: 4 Blatt 1

zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c1

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 1/24 (GP 1/4)

Entnahmetiefe: 2,0-3,0

m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

Einwaage Siebanalyse me:

39,50 g 14,50 g

%-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

73,15 26,85

Abgeschlämmter Anteil ma: Gesamtgewicht der Probe mt: 54,00 g

	Siebdurchmesser [mm]	Rückstand [g]	Rückstand [%]	Durchgang [%]
1	63,000	0,00	0,00	100,0
2	31,500	0,00	0,00	100,0
3	16,000	0,00	0,00	100,0
4	8,000	0,00	0,00	100,0
5	4,000	0,50	0,93	99,1
6	2,000	1,30	2,41	97,6
7	1,000	2,70	5,00	95,0
8	0,500	6,70	12,41	87,6
9	0,250	17,70	32,78	67,2
10	0,125	32,80	60,74	39,3
11	0,063	39,50	73,15	27
	Schale	39,50	73,15	27

Summe aller Siebrückstände:

S =

39,50 g

Größtkorn [mm]:

Siebverlust:

SV = me - S =

0,00

8,00

SV' = (me - S) / me * 100 =0,00

Fraktionsanteil	Prozentanteil
Ton	7,47
Schluff	19,06
Sandkorn	71,06
Feinsand	31,37
Mittelsand	32,63
Grobsand	7,06
Kieskorn	2,41
Feinkies	2,13
Mittelkies	0,26
Grobkies	0,02
Steine	0,00

Bemerkungen:

Prüfungsnr.: RK-006042024c1

Anlage: 4 Blatt 2

zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c1

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 1/24 (GP 1/4)

Entnahmetiefe: 2,0-3,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Aräometer Nr.: 1

Meniskuskorrektur mit Dispergierungsmittel: Cm = -0,3000 Natriumpyroph.

Ermittlung der Trockenmasse

Durch Trocknen (nach der Schlämmanalyse)

Behälter Nr.: 6 Trockene Probe + Behälter md + mB 114,50 g

Korndichte ρ_S : 2,650 g/cm³ Behälter mB 100,00 g

Trockene Probe md 14,50 g

mu = md * (ρ S - 1) / ρ S = 100% der Lesung 9,03 g

 $a = 100 / \text{mu} * (R + C_{\theta}) = 11,08 * (R + C_{\theta}) \% \text{ von md}$

Uhrzeit Vorgabe: 00:00:00	Abgelaufene Zeit s/m/h/d	Aräometer- lesung R'=(ρ'-1)*10³	Lesung + Meniskuskorr. R=R'+Cm	Korndurch- messer d [mm]	Temperatur θ [°C]	Temp. korr. C _θ	Korr.Lesung $R+C_{\theta}$	Schlämm- probe a [%]	Gesamt- probe a _{tot} [%]
00:00:30	30 s	9,70	9,40	0,0680	21,5	0,28	9,68	107,21	26,85
00:01:00	1 m	9,20	8,90	0,0484	21,5	0,28	9,18	101,68	25,46
00:02:00	2 m	8,60	8,30	0,0345	21,5	0,28	8,58	95,03	23,80
00:05:00	5 m	7,80	7,50	0,0220	21,5	0,28	7,78	86,17	21,58
00:15:00	15 m	6,70	6,40	0,0129	21,5	0,28	6,68	73,98	18,53
00:45:00	45 m	5,60	5,30	0,0075	21,5	0,28	5,58	61,80	15,48
02:00:00	2 h	4,50	4,20	0,0047	21,1	0,20	4,40	48,77	12,21
06:00:00	6 h	3,30	3,00	0,0028	21,1	0,20	3,20	35,47	8,88
00:00:00	1 d	2,20	1,90	0,0014	21,7	0,32	2,22	24,57	6,15

Bemerkungen:

Prüfungs-Nr.: RK-006042024c1

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

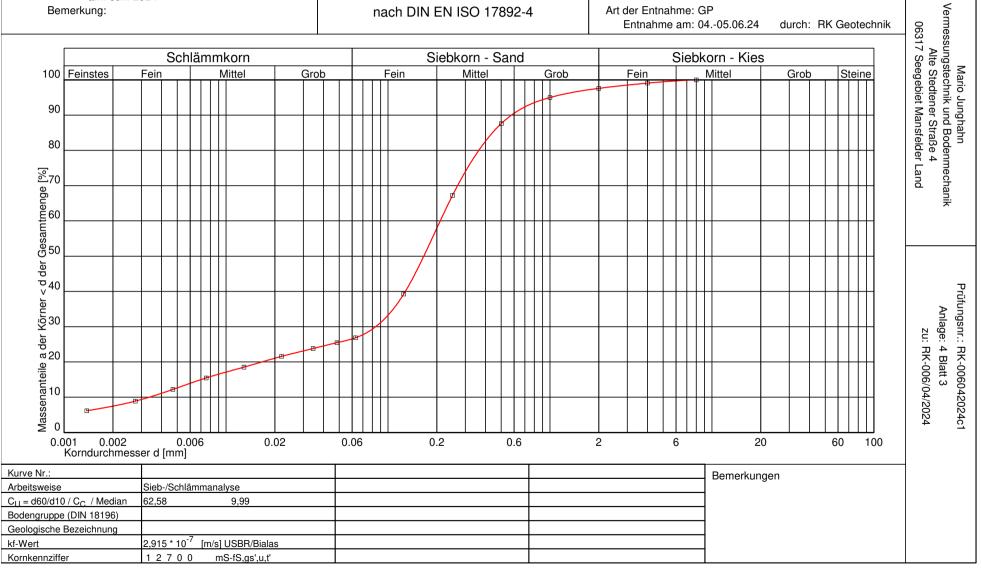
Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse


nach DIN EN ISO 17892-4

Entnahmestelle: BS 1/24 (GP 1/4)

Entnahmetiefe: 2,0-3,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Prüfungsnr.: RK-006042024c1 Anlage: 4 Blatt 4

zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c1

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 1/24 (GP 1/4)

grSi

grclSi

grsiCl grCl

60

50

40

70

Entnahmetiefe: 2.0-3.0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

grsaSi

grsaCl

sagrSi

sagrCl

grsaSi

grsaCl

grsaSi

grsaCl

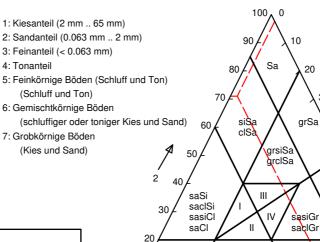
saGr

şiGr

30

Gr

10


20

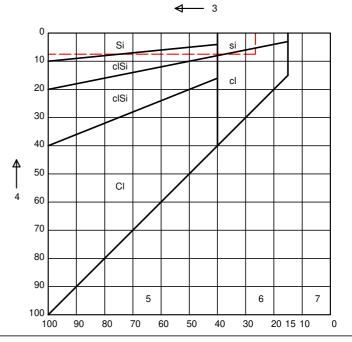
90

100

0

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	0,003
20,0	0,017
30,0	0,084
40,0	0,128
50,0	0,166
60,0	0,210
70,0	0,269
80,0	0,363
90,0	0,578
100,0	8,000

clSi


siCl Cl

80

90

100

Kornkennziffer	1 2 7 0 0
DIN 4023-1	mS-fS,gs',u,t'
DIN 14688-1	msifsiclfgrfgrMSaFSa
Bodengruppe	
Korngruppe	1.0 2.0
Geologische Bezeichnung	
Arbeitsweise	Sieb-/Schlämmanalyse
DIN EN 12620Tab. 2 - G	
DIN EN 12620Tab. 3 - G	G NR
DIN EN 12620Tab. 4 - G _{TC}	GTC NR
Block- / Steinanteil	mittel
Form der Körnungslinie	
AASHTO M 145-82/ UCSC	A-2-4 SM
$d_{10} / d_{30} / d_{60}$	0,00 0,08 0,21
C _U / C _C	62,58 9,99
d _q /F _q /n	0,19 10,00 38,85
D _S / Median	1,88
k _f -Wert	2,915 * 10 ⁻⁷ [m/s] USBR/Bialas
D / d / D/d	
I_P / W_L	
Ton	7,47
Schluff	19,06
fein / mittel / grob	6,47 7,12 5,48
Sand	71,06
fein / mittel / grob	31,37 32,63 7,06
Kies	2,41
fein / mittel / grob	2,13 0,26 0,02
Steine / Blöcke	0,00

Bemerkungen:

Prüfungsnr.: RK-006042024c2

Anlage: 4 Blatt 5 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c2

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 1/24 (GP 1/6)

Entnahmetiefe: 4,1-5,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

Einwaage Siebanalyse me:

40,20 g 14,60 g

%-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

73,36

26,64

Abgeschlämmter Anteil ma: Gesamtgewicht der Probe mt: 54,80 g

	Siebdurchmesser [mm]	Rückstand [g]	Rückstand [%]	Durchgang [%]
1	63,000	0,00	0,00	100,0
2	31,500	0,00	0,00	100,0
3	16,000	0,00	0,00	100,0
4	8,000	0,00	0,00	100,0
5	4,000	1,20	2,19	97,8
6	2,000	2,10	3,83	96,2
7	1,000	3,70	6,75	93,2
8	0,500	8,00	14,60	85,4
9	0,250	19,50	35,58	64,4
10	0,125	33,40	60,95	39,1
11	0,063	40,20	73,36	27
	Schale	40,20	73,36	27

Summe aller Siebrückstände:

S =

40,20 g

Größtkorn [mm]:

8,00

Siebverlust:

SV = me - S =SV' = (me - S) / me * 100 = 0,00

0,00

Fraktionsanteil	Prozentanteil
Ton	7,16
Schluff	19,10
Sandkorn	69,90
Feinsand	29,52
Mittelsand	32,76
Grobsand	7,62
Kieskorn	3,84
Feinkies	3,06
Mittelkies	0,72
Grobkies	0,06
Steine	0,00

Bemerkungen:

Prüfungsnr.: RK-006042024c2

Anlage: 4 Blatt 6

zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c2

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: im

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 1/24 (GP 1/6)

Entnahmetiefe: 4,1-5,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Aräometer Nr.: 1

Meniskuskorrektur mit Dispergierungsmittel: Cm = -0,3000 Natriumpyroph.

Ermittlung der Trockenmasse

Durch Trocknen (nach der Schlämmanalyse)

Behälter Nr.: 3 Trockene Probe + Behälter md + mB 114,60 g

Korndichte ρ_S : 2,650 g/cm³ Behälter mB 100,00 g

Trockene Probe md 14,60 g mu = md * (ρ_S - 1) / ρ_S = 100% der Lesung 9,09 g

 $a = 100 / mu * (R + C_{\theta}) = 11,00 * (R + C_{\theta}) % von md$

Uhrzeit Vorgabe: 00:00:00	Abgelaufene Zeit s/m/h/d	Aräometer- lesung R'=(ρ'-1)*10 ³	Lesung + Meniskuskorr. R=R'+Cm	Korndurch- messer d [mm]	Temperatur θ [°C]	Temp. korr. $C_{\scriptscriptstyle{\theta}}$	Korr.Lesung $R+C_{\theta}$	Schlämm- probe a [%]	Gesamt- probe a _{tot} [%]
00:00:30	30 s	10,10	9,80	0,0676	21,5	0,28	10,08	110,88	26,64
00:01:00	1 m	9,50	9,20	0,0482	21,5	0,28	9,48	104,28	25,06
00:02:00	2 m	8,90	8,60	0,0343	21,5	0,28	8,88	97,68	23,47
00:05:00	5 m	7,70	7,40	0,0221	21,5	0,28	7,68	84,48	20,30
00:15:00	15 m	6,60	6,30	0,0129	21,5	0,28	6,58	72,38	17,39
00:45:00	45 m	5,50	5,20	0,0076	21,5	0,28	5,48	60,28	14,48
02:00:00	2 h	4,60	4,30	0,0047	21,1	0,20	4,50	49,53	11,90
06:00:00	6 h	3,40	3,10	0,0027	21,1	0,20	3,30	36,33	8,73
00:00:00	1 d	2,10	1,80	0,0014	21,7	0,32	2,12	23,31	5,60

Bemerkungen:

Prüfungs-Nr.: RK-006042024c2

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

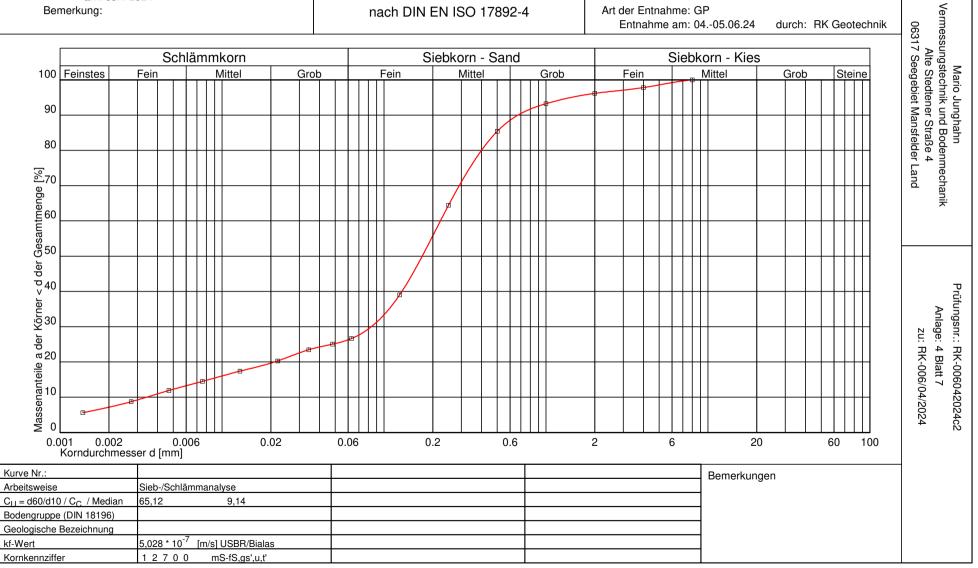
Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse


nach DIN EN ISO 17892-4

Entnahmestelle: BS 1/24 (GP 1/6)

Entnahmetiefe: 4,1-5,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Prüfungsnr.: RK-006042024c2

Anlage: 4 Blatt 8 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c2

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 1/24 (GP 1/6)

grSi

grclSi

grsiCl grCl

60

50

40

70

Entnahmetiefe: 4,1-5,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

grsaSi

grsaCl

sagrSi

sagrCl

grsaSi

grsaCl

grsaSi

grsaCl

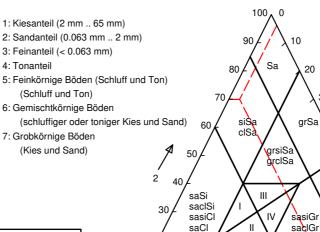
saGr

siGr

30

Gr

10


20

90

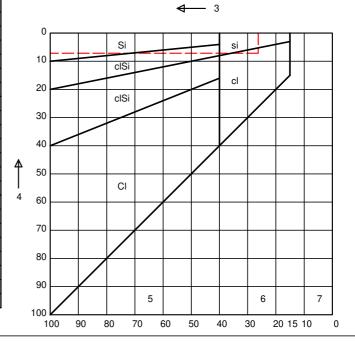
100

0

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	0,003
20,0	0,021
30,0	0,083
40,0	0,129
50,0	0,172
60,0	0,223
70,0	0,291
80,0	0,400
90,0	0,671
100,0	8,000

20

100


clSi

siCl Cl

80

90

Kornkennziffer	1 2 7 0 0		
DIN 4023-1	mS-fS,gs',u,t'		
DIN 14688-1	csimsiclfgrfgrMSaFSa		
Bodengruppe			
Korngruppe	1.0 2.0		
Geologische Bezeichnung			
Arbeitsweise	Sieb-/Schlämmanalyse		
DIN EN 12620Tab. 2 - G			
DIN EN 12620Tab. 3 - G	G NR		
DIN EN 12620Tab. 4 - G _{TC}	GTC NR		
Block- / Steinanteil	mittel		
Form der Körnungslinie			
AASHTO M 145-82/ UCSC	A-2-4 SM		
d ₁₀ / d ₃₀ / d ₆₀	0,00 0,08 0,22		
C _U / C _C	65,12 9,14		
d _g / F _g / n	0,19 10,00 38,06		
D _S / Median	1,88		
k _f -Wert	5,028 * 10 ^{-/} [m/s] USBR/Bialas		
D / d / D/d			
I _P / W _L			
Ton	7,16		
Schluff	19,10		
fein / mittel / grob	6,09 6,42 6,59		
Sand	69,90		
fein / mittel / grob	29,52 32,76 7,62		
Kies	3,84		
fein / mittel / grob	3,06 0,72 0,06		
Steine / Blöcke	0,00		

Bemerkungen:

Prüfungsnr.: RK-006042024c3

Anlage: 4 Blatt 9 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c3

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 3/24 (GP 3/3)

Entnahmetiefe: 1,1-2,6 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

Einwaage Siebanalyse me:

39,70 g 13,80 g

%-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

74,21

25,79

Abgeschlämmter Anteil ma: Gesamtgewicht der Probe mt: 53.50 a

	Siebdurchmesser [mm]	Rückstand [g]	Rückstand [%]	Durchgang [%]
1	63,000	0,00	0,00	100,0
2	31,500	0,00	0,00	100,0
3	16,000	0,00	0,00	100,0
4	8,000	0,00	0,00	100,0
5	4,000	0,90	1,68	98,3
6	2,000	1,60	2,99	97,0
7	1,000	2,80	5,23	94,8
8	0,500	6,80	12,71	87,3
9	0,250	17,90	33,46	66,5
10	0,125	33,40	62,43	37,6
11	0,063	39,70	74,21	26
	Schale	39,70	74,21	26

Summe aller Siebrückstände:

S =

39,70 g Größtkorn [mm]:

8,00

Siebverlust:

SV = me - S =

0,00 %

SV' = (me - S) / me * 100 =0,00

Fraktionsanteil	Prozentanteil
Ton	6,88
Schluff	18,56
Sandkorn	71,57
Feinsand	31,38
Mittelsand	33,44
Grobsand	6,75
Kieskorn	2,99
Feinkies	2,40
Mittelkies	0,55
Grobkies	0,04
Steine	0,00

Bemerkungen:

Prüfungsnr.: RK-006042024c3 Anlage: 4 Blatt 10 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c3

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 3/24 (GP 3/3)

Entnahmetiefe: 1,1-2,6 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Aräometer Nr.: 1

Meniskuskorrektur mit Dispergierungsmittel: Cm = -0,3000 Natriumpyroph.

Ermittlung der Trockenmasse

Durch Trocknen (nach der Schlämmanalyse)

Behälter Nr.: 5 Trockene Probe + Behälter md + mB 113,80 g

Korndichte ρ_S : 2,650 g/cm³ Behälter mB 100,00 g Trockene Probe md 13,80 g

mu = md * (ρ_S - 1) / ρ_S = 100% der Lesung 8,59 g

 $a = 100 / \text{mu} * (R + C_{\theta}) = 11,64 * (R + C_{\theta}) \% \text{ von md}$

Uhrzeit Vorgabe: 00:00:00	Abgelaufene Zeit s/m/h/d	Aräometer- lesung R'=(ρ'-1)*10³	Lesung + Meniskuskorr. R=R'+Cm	Korndurch- messer d [mm]	Temperatur θ [°C]	Temp. korr. C _θ	Korr.Lesung $R+C_{\theta}$	Schlämm- probe a [%]	Gesamt- probe a _{tot} [%]
00:00:30	30 s	9,40	9,10	0,0682	21,5	0,28	9,38	109,16	25,79
00:01:00	1 m	8,80	8,50	0,0486	21,5	0,28	8,78	102,18	24,14
00:02:00	2 m	8,20	7,90	0,0347	21,5	0,28	8,18	95,20	22,49
00:05:00	5 m	7,40	7,10	0,0221	21,5	0,28	7,38	85,88	20,29
00:15:00	15 m	6,30	6,00	0,0130	21,5	0,28	6,28	73,08	17,27
00:45:00	45 m	5,20	4,90	0,0076	21,5	0,28	5,18	60,28	14,24
02:00:00	2 h	4,40	4,10	0,0047	21,1	0,20	4,30	50,08	11,83
06:00:00	6 h	3,20	2,90	0,0028	21,1	0,20	3,10	36,11	8,53
00:00:00	1 d	1,90	1,60	0,0014	21,7	0,32	1,92	22,33	5,28

Bemerkungen:

Prüfungs-Nr.: RK-006042024c3

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

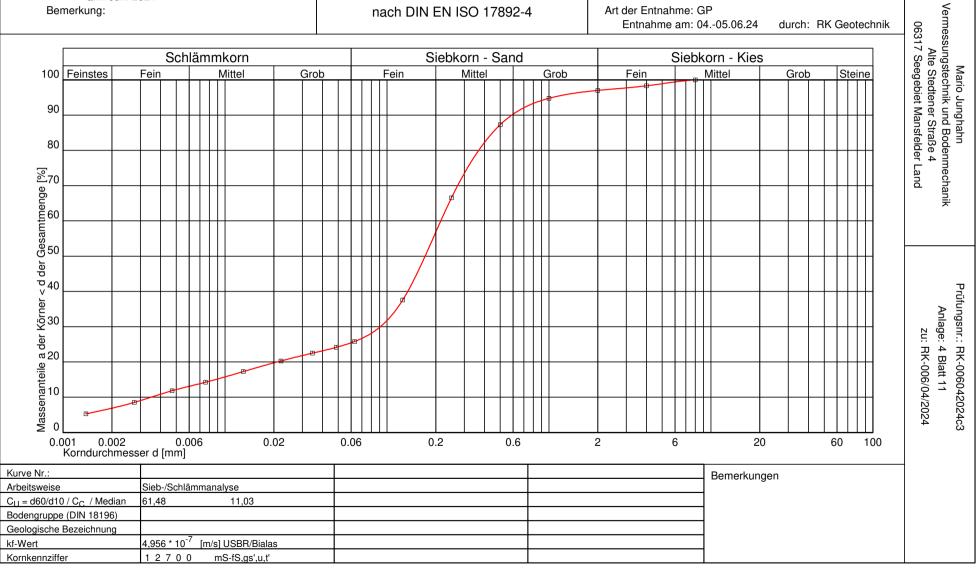
Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse


nach DIN EN ISO 17892-4

Entnahmestelle: BS 3/24 (GP 3/3)

Entnahmetiefe: 1,1-2,6 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Prüfungsnr.: RK-006042024c3 Anlage: 4 Blatt 12 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c3

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 3/24 (GP 3/3)

grSi

grclSi

grsiCl grCl

60

50

40

70

Entnahmetiefe: 1,1-2,6 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

grsaSi

grsaCl

sagrSi

sagrCl

grsaSi

grsaCl

grsaSi

grsaCl

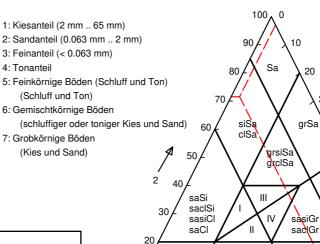
saGr

siGr

30

Gr

10


20

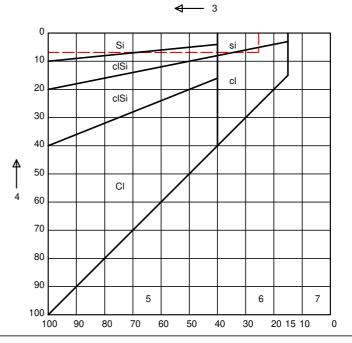
90

100

0

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	0,003
20,0	0,021
30,0	0,091
40,0	0,134
50,0	0,172
60,0	0,215
70,0	0,273
80,0	0,368
90,0	0,589
100,0	8,000

clSi


siCl Cl

80

90

100

Kornkennziffer	1 2 7 0 0				
DIN 4023-1	mS-fS,gs',u,t'				
DIN 14688-1	msifsiclfgrfgrMSaFSa				
Bodengruppe					
Korngruppe	1.0 2.0				
Geologische Bezeichnung					
Arbeitsweise	Sieb-/Schlämmanalyse				
DIN EN 12620Tab. 2 - G					
DIN EN 12620Tab. 3 - G	G NR				
DIN EN 12620Tab. 4 - G _{TC}	GTC NR				
Block- / Steinanteil	mittel				
Form der Körnungslinie					
AASHTO M 145-82/ UCSC	A-2-4 SM				
d ₁₀ / d ₃₀ / d ₆₀	0,00 0,09 0,21				
C _U / C _C	61,48 11,03				
d _q /F _q /n	0,19 10,00 38,13				
D _S / Median	1,88				
k _f -Wert	4,956 * 10 ⁻⁷ [m/s] USBR/Bialas				
D / d / D/d					
I _P / W _L					
Ton	6,88				
Schluff	18,56				
fein / mittel / grob	6,21 6,66 5,69				
Sand	71,57				
fein / mittel / grob	31,38 33,44 6,75				
Kies	2,99				
fein / mittel / grob	2,40 0,55 0,04				
Steine / Blöcke	0,00				

Bemerkungen:

Prüfungsnr.: RK-006042024c4 Anlage: 4 Blatt 13 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c4

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 4/24 (GP 4/4)

Entnahmetiefe: 2,0-3,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

Einwaage Siebanalyse me: Abgeschlämmter Anteil ma: 37,80 g 17,00 g

%-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

68,98

31,02

Gesamtgewicht der Probe mt: 54,80 g

	Siebdurchmesser [mm]	Rückstand [g]	Rückstand [%]	Durchgang [%]
1	63,000	0,00	0,00	100,0
2	31,500	0,00	0,00	100,0
3	16,000	0,00	0,00	100,0
4	8,000	0,60	1,09	98,9
5	4,000	1,20	2,19	97,8
6	2,000	1,90	3,47	96,5
7	1,000	3,30	6,02	94,0
8	0,500	7,00	12,77	87,2
9	0,250	16,80	30,66	69,3
10	0,125	30,80	56,20	43,8
11	0,063	37,80	68,98	31
	Schale	37,80	68,98	31

Summe aller Siebrückstände:

37,80 g S =

Größtkorn [mm]:

16,00

Siebverlust:

SV = me - S =SV' = (me - S) / me * 100 = 0,00

0,00

Fraktionsanteil	Prozentanteil
Ton	8,05
Schluff	22,65
Sandkorn	65,83
Feinsand	30,31
Mittelsand	28,82
Grobsand	6,70
Kieskorn	3,46
Feinkies	1,89
Mittelkies	1,67
Grobkies	0,00
Steine	0,01

Bemerkungen:

Prüfungsnr.: RK-006042024c4 Anlage: 4 Blatt 14 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c4

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 4/24 (GP 4/4)

Entnahmetiefe: 2,0-3,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Aräometer Nr.: 1

Meniskuskorrektur mit Dispergierungsmittel: Cm = -0,3000 Natriumpyroph.

Ermittlung der Trockenmasse

Durch Trocknen (nach der Schlämmanalyse)

Behälter Nr.: 3 Trockene Probe + Behälter md + mB 117,00 g

Korndichte ρ_S : 2,650 g/cm³ Behälter mB 100,00 g

Trockene Probe md 17,00 g mu = md * (ρ S - 1) / ρ S = 100% der Lesung 10,58 g

 $a = 100 / \text{mu}^* (R + C_{\theta}) = 9,45 * (R + C_{\theta}) \% \text{ von md}$

Uhrzeit Vorgabe: 00:00:00	Abgelaufene Zeit s/m/h/d	Aräometer- lesung R'=(ρ'-1)*10³	Lesung + Meniskuskorr. R=R'+Cm	Korndurch- messer d [mm]	Temperatur θ [°C]	Temp. korr. C _θ	Korr.Lesung $R+C_{\theta}$	Schlämm- probe a [%]	Gesamt- probe a _{tot} [%]
00:00:30	30 s	12,50	12,20	0,0650	22,1	0,40	12,60	119,02	31,02
00:01:00	1 m	11,90	11,60	0,0464	22,1	0,40	12,00	113,35	29,54
00:02:00	2 m	11,10	10,80	0,0331	22,1	0,40	11,20	105,79	27,57
00:05:00	5 m	9,90	9,60	0,0213	22,1	0,40	10,00	94,46	24,62
00:15:00	15 m	8,50	8,20	0,0125	22,1	0,40	8,60	81,23	21,17
00:45:00	45 m	7,10	6,80	0,0074	22,1	0,40	7,20	68,00	17,72
02:00:00	2 h	5,80	5,50	0,0046	21,6	0,30	5,80	54,79	14,28
06:00:00	6 h	4,10	3,80	0,0027	21,6	0,30	4,10	38,73	10,09
00:00:00	1 d	2,40	2,10	0,0014	21,5	0,28	2,38	22,48	5,86

Bemerkungen:

Prüfungs-Nr.: RK-006042024c4

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

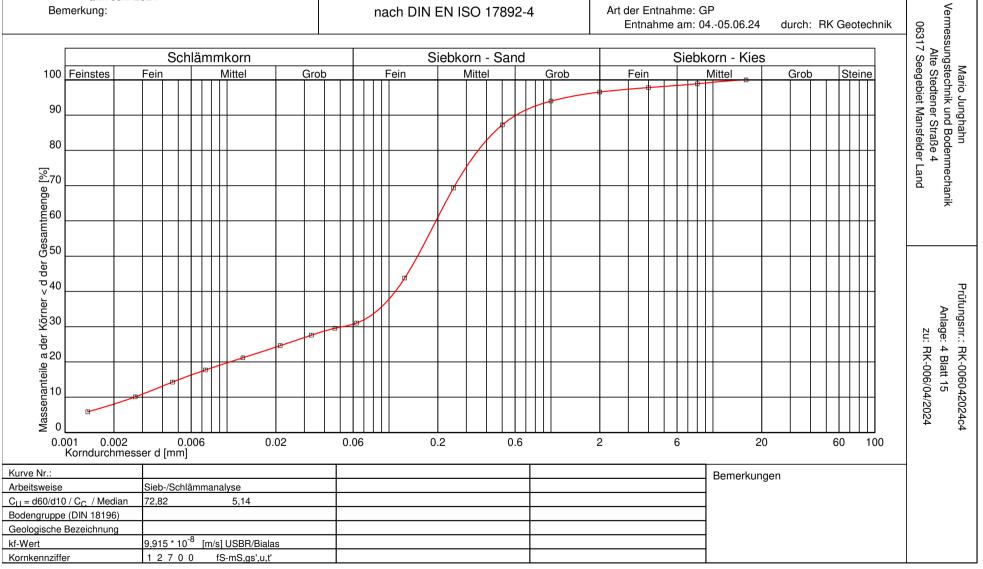
Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse


nach DIN EN ISO 17892-4

Entnahmestelle: BS 4/24 (GP 4/4)

Entnahmetiefe: 2,0-3,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Prüfungsnr.: RK-006042024c4 Anlage: 4 Blatt 16 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c4

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 4/24 (GP 4/4)

grSi

grclSi

grsiCl

60

50

40

grCl

70

Entnahmetiefe: 2,0-3,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

grsaSi

grsaCl

sagrSi

sagrCl

grsaSi

grsaCl

grsaSi

grsaCl

saGr

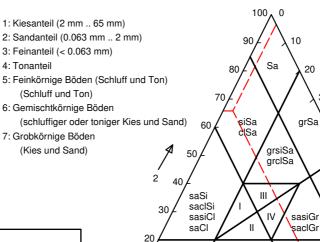
siGr

clGr

30

20

Gr


10

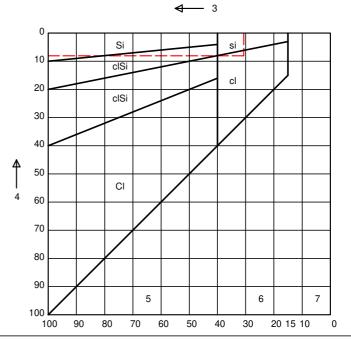
90

100

0

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	0,003
20,0	0,010
30,0	0,052
40,0	0,109
50,0	0,150
60,0	0,195
70,0	0,255
80,0	0,355
90,0	0,608
100,0	16,000

clSi


siCl Cl

80

90

100

Kornkennziffer	1 2 7 0 0				
DIN 4023-1	fS-mS,gs',u,t'				
DIN 14688-1	fsifsiclfgrfgrcoFSaFSa				
Bodengruppe					
Korngruppe	1.0 2.0				
Geologische Bezeichnung					
Arbeitsweise	Sieb-/Schlämmanalyse				
DIN EN 12620Tab. 2 - G					
DIN EN 12620Tab. 3 - G	G NR				
DIN EN 12620Tab. 4 - G _{TO}	GTC NR				
Block- / Steinanteil	mittel				
Form der Körnungslinie					
AASHTO M 145-82/ UCSO	A-2-4 SM				
$d_{10} / d_{30} / d_{60}$	0,00 0,05 0,19				
C _U / C _C	72,82 5,14				
d _q / F _q / n	0,19 10,00 40,22				
D _S / Median	1,88				
k _f -Wert	9,915 * 10 ⁻⁸ [m/s] USBR/Bialas				
D / d / D/d					
I_P / W_L					
Ton	8,05				
Schluff	22,65				
fein / mittel / grob	8,24 7,92 6,49				
Sand	65,83				
fein / mittel / grob	30,31 28,82 6,70				
Kies	3,46				
fein / mittel / grob	1,89 1,67 0,00				
Steine / Blöcke	0,01				

Bemerkungen:

Prüfungsnr.: RK-006042024c5 Anlage: 4 Blatt 17 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c5

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 5/24 (GP 5/4)

Entnahmetiefe: 2,0-3,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

Einwaage Siebanalyse me:

40,00 g 14,10 g %-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

e': 73,94 a': 26,06

8,00

Abgeschlämmter Anteil ma: 14,10 g Gesamtgewicht der Probe mt: 54,10 g

	Siebdurchmesser [mm]	Rückstand [g]	Rückstand [%]	Durchgang [%]
1	63,000	0,00	0,00	100,0
2	31,500	0,00	0,00	100,0
3	16,000	0,00	0,00	100,0
4	8,000	0,00	0,00	100,0
5	4,000	0,70	1,29	98,7
6	2,000	1,50	2,77	97,2
7	1,000	2,80	5,18	94,8
8	0,500	7,10	13,12	86,9
9	0,250	18,20	33,64	66,4
10	0,125	34,20	63,22	36,8
11	0,063	40,00	73,94	26
	Schale	40,00	73,94	26

Summe aller Siebrückstände:

S = 40,0

40,00 g

Größtkorn [mm]:

Siebverlust:

SV = me - S =

0,00

SV' = (me - S) / me * 100 = 0,00 %

Fraktionsanteil	Prozentanteil
Ton	6,27
Schluff	19,47
Sandkorn	71,48
Feinsand	30,67
Mittelsand	33,49
Grobsand	7,33
Kieskorn	2,77
Feinkies	2,36
Mittelkies	0,39
Grobkies	0,03
Steine	0,00

Bemerkungen:

Prüfungsnr.: RK-006042024c5 Anlage: 4 Blatt 18 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c5

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: im

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 5/24 (GP 5/4)

Entnahmetiefe: 2,0-3,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Aräometer Nr.: 1

Meniskuskorrektur mit Dispergierungsmittel: Cm = -0,3000 Natriumpyroph.

Ermittlung der Trockenmasse

Durch Trocknen (nach der Schlämmanalyse)

Behälter Nr.: 5 Trockene Probe + Behälter md + mB 114,10 g

Korndichte ρ_S : 2,650 g/cm³ Behälter mB 100,00 g

Trockene Probe md 14,10 g

mu = md * (ρ S - 1) / ρ S = 100% der Lesung 8,78 g

 $a = 100 / \text{mu} * (R + C_{\theta}) = 11,39 * (R + C_{\theta}) \% \text{ von md}$

Uhrzeit Vorgabe:	Abgelaufene Zeit	lesung	Lesung + Meniskuskorr.	Korndurch- messer	Temperatur	Temp. korr.	Korr.Lesung	Schlämm- probe	Gesamt- probe
00:00:00	s/m/h/d	$R'=(\rho'-1)^*10^3$	R=R'+Cm	d [mm]	θ [°C]	C _θ	R+C _θ	a [%]	a _{tot} [%]
00:00:30	30 s	9,60	9,30	0,0676	22,1	0,40	9,70	110,47	26,06
00:01:00	1 m	9,00	8,70	0,0482	22,1	0,40	9,10	103,63	24,45
00:02:00	2 m	8,30	8,00	0,0344	22,1	0,40	8,40	95,66	22,57
00:05:00	5 m	7,40	7,10	0,0220	22,1	0,40	7,50	85,41	20,15
00:15:00	15 m	6,30	6,00	0,0129	22,1	0,40	6,40	72,88	17,19
00:45:00	45 m	5,10	4,80	0,0075	22,1	0,40	5,20	59,21	13,97
02:00:00	2 h	3,90	3,60	0,0047	21,6	0,30	3,90	44,41	10,48
06:00:00	6 h	2,80	2,50	0,0027	21,6	0,30	2,80	31,88	7,52
00:00:00	1 d	1,90	1,60	0,0014	21,5	0,28	1,88	21,41	5,05

Bemerkungen:

Prüfungs-Nr.: RK-006042024c5

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

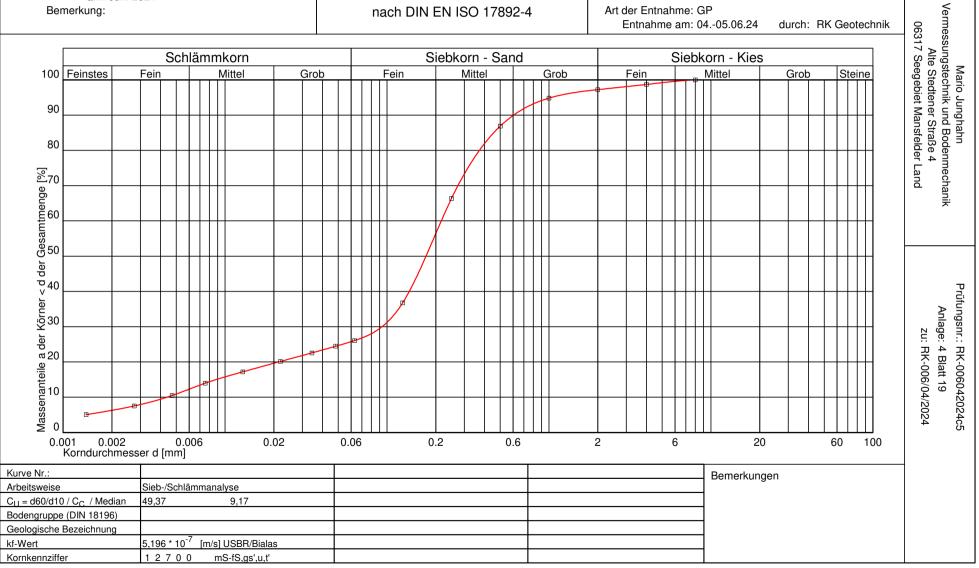
Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse


nach DIN EN ISO 17892-4

Entnahmestelle: BS 5/24 (GP 5/4)

Entnahmetiefe: 2,0-3,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Prüfungsnr.: RK-006042024c5 Anlage: 4 Blatt 20 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c5

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 5/24 (GP 5/4)

Entnahmetiefe: 2.0-3.0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

grsaSi

grsaCl

sagrSi

sagrCl

grsaSi

grsaCl

grsaSi

grsaCl

saGr

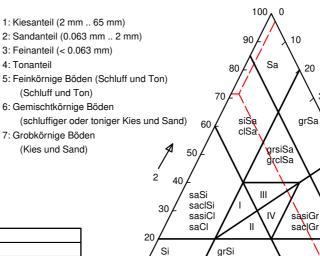
siGr

clGr

30

Gr

10


20

90

100

0

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	0,004
20,0	0,021
30,0	0,093
40,0	0,137
50,0	0,174
60,0	0,216
70,0	0,274
80,0	0,372
90,0	0,604
100,0	8,000

clSi

siCl Cl

80

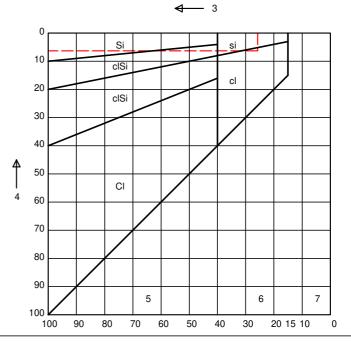
90

100

grclSi

grsiCl

60


50

40

grCl

70

Kornkennziffer	1 2 7 0 0
DIN 4023-1	mS-fS,gs',u,t'
DIN 14688-1	msicsiclfgrfgrMSaFSa
Bodengruppe	
Korngruppe	1.0 2.0
Geologische Bezeichnung	
Arbeitsweise	Sieb-/Schlämmanalyse
DIN EN 12620Tab. 2 - G	
DIN EN 12620Tab. 3 - G	G NR
DIN EN 12620Tab. 4 - G _{TC}	GTC NR
Block- / Steinanteil	mittel
Form der Körnungslinie	
AASHTO M 145-82/ UCSC	A-2-4 SM
d ₁₀ / d ₃₀ / d ₆₀	0,00 0,09 0,22
C _U / C _C	49,37 9,17
d _g / F _g / n	0,19 10,00 38,25
D _S / Median	1,88
k _f -Wert	5,196 * 10 ⁻⁷ [m/s] USBR/Bialas
D / d / D/d	
I _P / W _L	
Ton	6,27
Schluff	19,47
fein / mittel / grob	6,00 7,36 6,12
Sand	71,48
fein / mittel / grob	30,67 33,49 7,33
Kies	2,77
fein / mittel / grob	2,36 0,39 0,03
Steine / Blöcke	0,00

Bemerkungen:

Prüfungsnr.: RK-006042024c6 Anlage: 4 Blatt 21

zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c6

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 5/24 (GP 5/7)

Entnahmetiefe: 5,0-7,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

Einwaage Siebanalyse me:

53,00 g 18,10 g %-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

a' me': 74,54

25,46

Abgeschlämmter Anteil ma: 18,10 g
Gesamtgewicht der Probe mt: 71,10 g

	Siebdurchmesser [mm]	Rückstand [g]	Rückstand [%]	Durchgang [%]
1	63,000	0,00	0,00	100,0
2	31,500	0,00	0,00	100,0
3	16,000	0,00	0,00	100,0
4	8,000	0,00	0,00	100,0
5	4,000	0,70	0,98	99,0
6	2,000	1,60	2,25	97,7
7	1,000	3,30	4,64	95,4
8	0,500	8,80	12,38	87,6
9	0,250	23,80	33,47	66,5
10	0,125	44,50	62,59	37,4
11	0,063	53,00	74,54	25
	Schale	53.00	74.54	25

Summe aller Siebrückstände:

S = 53,00

Größtkorn [mm]:

8,00

Siebverlust:

SV = me - S =

53,00 g 0,00 g

SV' = (me - S) / me * 100 = 0,00 %

Fraktionsanteil	Prozentanteil
Ton	6,79
Schluff	18,36
Sandkorn	72,61
Feinsand	31,61
Mittelsand	33,92
Grobsand	7,07
Kieskorn	2,25
Feinkies	1,94
Mittelkies	0,29
Grobkies	0,02
Steine	0,00

Bemerkungen:

Prüfungsnr.: RK-006042024c6 Anlage: 4 Blatt 22 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c6

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 5/24 (GP 5/7)

Entnahmetiefe: 5,0-7,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Aräometer Nr.: 1

Meniskuskorrektur mit Dispergierungsmittel: Cm = -0,3000 Natriumpyroph.

Ermittlung der Trockenmasse

Durch Trocknen (nach der Schlämmanalyse)

Behälter Nr.: 6 Trockene Probe + Behälter md + mB 118,10 g

 $\label{eq:Korndichte} \text{Korndichte ρ_S:} \qquad \qquad \text{2,650 g/cm}^3 \qquad \qquad \text{Behälter mB} \qquad \qquad \text{100,00 g}$

Trockene Probe md 18,10 g

 $mu = md * (\rho_S - 1) / \rho_S = 100\% der Lesung \qquad \qquad 11,27 \quad g$

 $a = 100 / \text{mu} * (R + C_{\theta}) = 8,87 * (R + C_{\theta}) \% \text{ von md}$

Uhrzeit Vorgabe: 00:00:00	Abgelaufene Zeit s/m/h/d	Aräometer- lesung R'=(ρ'-1)*10³	Lesung + Meniskuskorr. R=R'+Cm	Korndurch- messer d [mm]	Temperatur θ [°C]	Temp. korr. C _θ	Korr.Lesung $R+C_{\theta}$	Schlämm- probe a [%]	Gesamt- probe a _{tot} [%]
00:00:30	30 s	11,80	11,50	0,0656	22,1	0,40	11,90	105,57	25,46
00:01:00	1 m	11,10	10,80	0,0468	22,1	0,40	11,20	99,36	23,96
00:02:00	2 m	10,40	10,10	0,0334	22,1	0,40	10,50	93,15	22,46
00:05:00	5 m	9,30	9,00	0,0215	22,1	0,40	9,40	83,39	20,11
00:15:00	15 m	8,00	7,70	0,0126	22,1	0,40	8,10	71,86	17,33
00:45:00	45 m	6,80	6,50	0,0074	22,1	0,40	6,90	61,21	14,76
02:00:00	2 h	5,30	5,00	0,0046	21,6	0,30	5,30	47,02	11,34
06:00:00	6 h	3,90	3,60	0,0027	21,6	0,30	3,90	34,60	8,34
00:00:00	1 d	2,30	2,00	0,0014	21,5	0,28	2,28	20,23	4,88

Bemerkungen:

Prüfungs-Nr.: RK-006042024c6

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

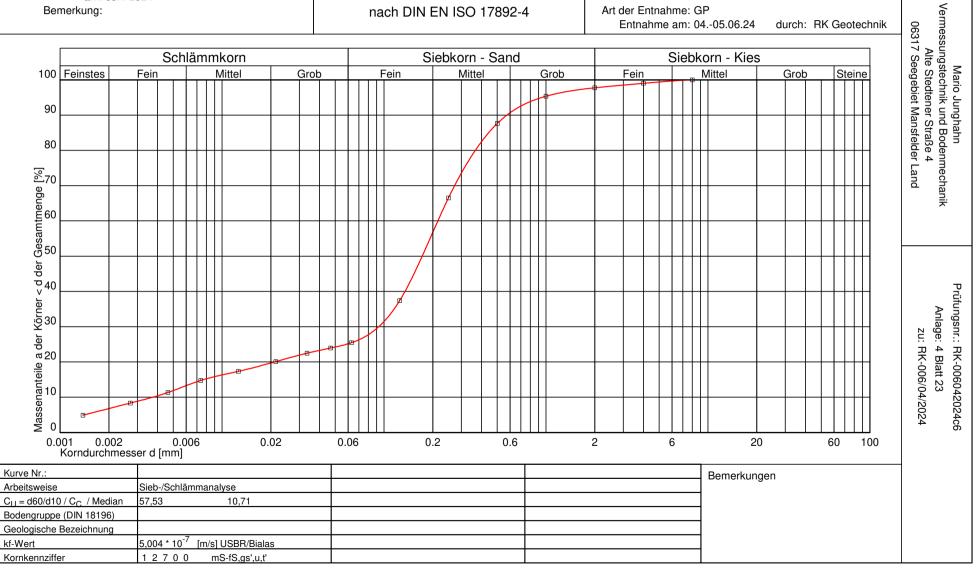
Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse


nach DIN EN ISO 17892-4

Entnahmestelle: BS 5/24 (GP 5/7)

Entnahmetiefe: 5,0-7,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Prüfungsnr.: RK-006042024c6 Anlage: 4 Blatt 24 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c6

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 5/24 (GP 5/7)

Entnahmetiefe: 5.0-7.0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

grsaSi

grsaCl

sagrSi

sagrCl

grsaSi

grsaCl

grsaSi

grsaCl

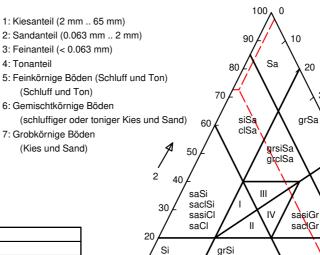
saGr

siGr

30

Gr

10


20

90

100

0

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	0,004
20,0	0,021
30,0	0,093
40,0	0,135
50,0	0,172
60,0	0,215
70,0	0,273
80,0	0,366
90,0	0,573
100,0	8,000

clSi

siCl Cl

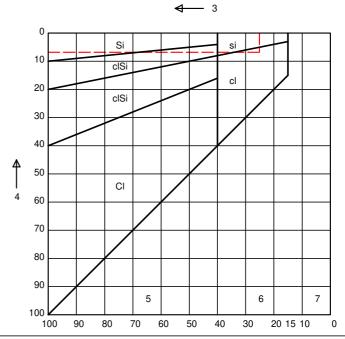
80

90

100

grclSi

grsiCl grCl


60

50

40

70

Kornkennziffer	1 2 7 0 0
DIN 4023-1	mS-fS,gs',u,t'
DIN 14688-1	fsifsiclfgrfgrMSaFSa
Bodengruppe	
Korngruppe	1.0 2.0
Geologische Bezeichnung	
Arbeitsweise	Sieb-/Schlämmanalyse
DIN EN 12620Tab. 2 - G	
DIN EN 12620Tab. 3 - G	G NR
DIN EN 12620Tab. 4 - G _{TO}	GTC NR
Block- / Steinanteil	mittel
Form der Körnungslinie	
AASHTO M 145-82/ UCSO	A-2-4 SM
$d_{10} / d_{30} / d_{60}$	0,00 0,09 0,21
C _U / C _C	57,53 10,71
d _g / F _g / n	0,19 10,00 38,17
D _S / Median	1,88
k _f -Wert	5,004 * 10 ^{-/} [m/s] USBR/Bialas
D / d / D/d	
I_P / W_L	
Ton	6,79
Schluff	18,36
fein / mittel / grob	6,50 6,44 5,43
Sand	72,61
fein / mittel / grob	31,61 33,92 7,07
Kies	2,25
fein / mittel / grob	1,94 0,29 0,02
Steine / Blöcke	0,00

Bemerkungen:

Prüfungsnr.: RK-006042024c7 Anlage: 4 Blatt 25 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c7

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: im

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 6/24 (GP 6/1)

Entnahmetiefe: 0,0-0,28

Bodenart: Sand, schluffig, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

Einwaage Siebanalyse me:

43,00 g 12,80 g

%-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

77,06

22,94

m unter GOK

Abgeschlämmter Anteil ma:

Gesamtgewicht der Probe mt: 55,80 g Siebdurchmesser [mm] 1 63,000

Rückstand Rückstand Durchgang [g] [%] [%] 0,00 0,00 100,0 2 31,500 0,00 0,00 100,0 3 16,000 0,00 0,00 100,0 4 8,000 0,00 0,00 100,0 5 4,000 0,80 1,43 98,6 2,000 1,40 2,51 97,5 6 7 2,60 4,66 95,3 1,000 8 0,500 6,60 11,83 88,2 9 0,250 17,50 31,36 68,6 40,5 10 0,125 33,20 59,50 43,00 23 11 0,063 77,06 43,00 Schale 77,06 23

Summe aller Siebrückstände:

S =

43,00 g Größtkorn [mm]:

8,00

Siebverlust:

SV = me - S =SV' = (me - S) / me * 100 = 0,00 0,00

%

Fraktionsanteil	Prozentanteil
Ton	6,89
Schluff	15,62
Sandkorn	74,98
Feinsand	37,24
Mittelsand	31,27
Grobsand	6,47
Kieskorn	2,51
Feinkies	2,00
Mittelkies	0,47
Grobkies	0,04
Steine	0,00

Bemerkungen:

Prüfungsnr.: RK-006042024c7 Anlage: 4 Blatt 26 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c7

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 6/24 (GP 6/1)

Entnahmetiefe: 0,0-0,28 m unter GOK

Bodenart: Sand, schluffig, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Aräometer Nr.: 1

Meniskuskorrektur mit Dispergierungsmittel: Cm = -0,3000 Natriumpyroph.

Ermittlung der Trockenmasse

Durch Trocknen (nach der Schlämmanalyse)

Behälter Nr.: 3 Trockene Probe + Behälter md + mB 112,80 g

Korndichte ρ_S : 2,650 g/cm³ Behälter mB 100,00 g Trockene Probe md 12,80 g

mu = md * (ρ_S - 1) / ρ_S = 100% der Lesung 7,97 g

 $a = 100 / \text{mu}^* (R + C_{\theta}) = 12,55 * (R + C_{\theta}) \% \text{ von md}$

Uhrzeit Vorgabe: 00:00:00	Abgelaufene Zeit s/m/h/d	Aräometer- lesung R'=(ρ'-1)*10 ³	Lesung + Meniskuskorr. R=R'+Cm	Korndurch- messer d [mm]	Temperatur θ [°C]	Temp. korr. C _e	Korr.Lesung $R+C_{\theta}$	Schlämm- probe a [%]	Gesamt- probe a _{tot} [%]
00:00:30	30 s	8,30	8,00	0,0694	21,3	0,24	8,24	103,40	22,94
00:01:00	1 m	7,80	7,50	0,0494	21,3	0,24	7,74	97,13	21,55
00:02:00	2 m	7,30	7,00	0,0351	21,3	0,24	7,24	90,85	20,16
00:05:00	5 m	6,70	6,40	0,0224	21,3	0,24	6,64	83,33	18,49
00:15:00	15 m	6,00	5,70	0,0130	21,3	0,24	5,94	74,54	16,54
00:45:00	45 m	5,10	4,80	0,0076	21,3	0,24	5,04	63,25	14,03
02:00:00	2 h	4,10	3,80	0,0047	21,6	0,30	4,10	51,43	11,41
06:00:00	6 h	2,90	2,60	0,0027	21,6	0,30	2,90	36,38	8,07
00:00:00	1 d	2,10	1,80	0,0014	22,1	0,40	2,20	27,58	6,12

Bemerkungen:

Prüfungs-Nr.: RK-006042024c7

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

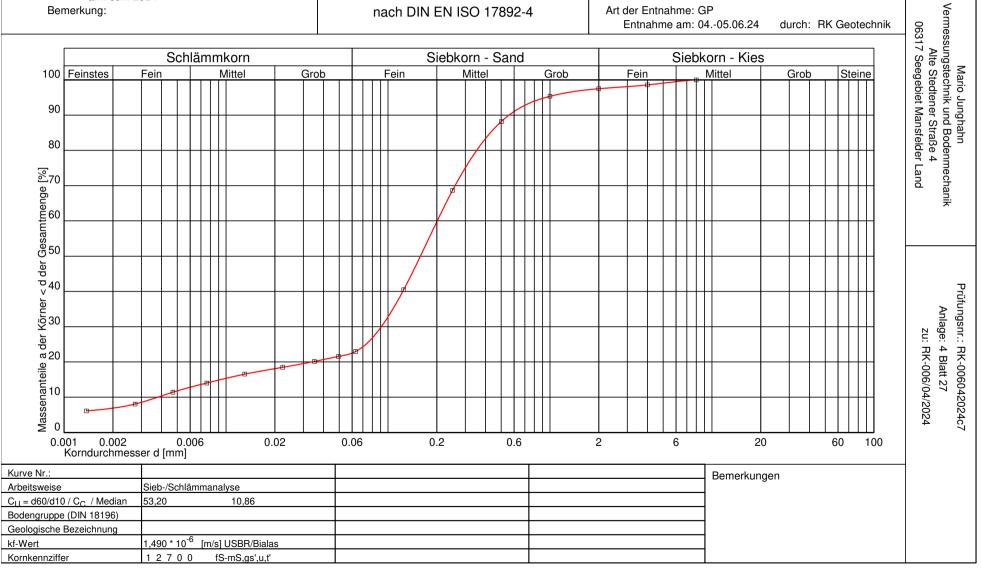
Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse


nach DIN EN ISO 17892-4

Entnahmestelle: BS 6/24 (GP 6/1)

Entnahmetiefe: 0,0-0,28 m unter GOK

Bodenart: Sand, schluffig, tonig

Art der Entnahme: GP

Prüfungsnr.: RK-006042024c7 Anlage: 4 Blatt 28 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c7

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 6/24 (GP 6/1)

Entnahmetiefe: 0,0-0,28 m unter GOK

Bodenart: Sand, schluffig, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

grsaSi

grsaCl

sagrSi

sagrCl

grsaSi

grsaCl

grsaSi

grsaCl

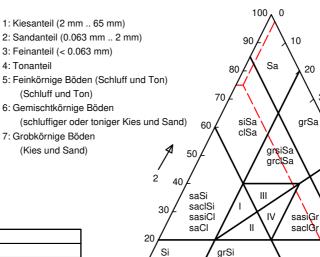
saGr

siGr

30

Gr

10


20

90

100

0

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	0,004
20,0	0,034
30,0	0,091
40,0	0,123
50,0	0,158
60,0	0,201
70,0	0,259
80,0	0,353
90,0	0,558
100,0	8,000

clSi

siCl Cl

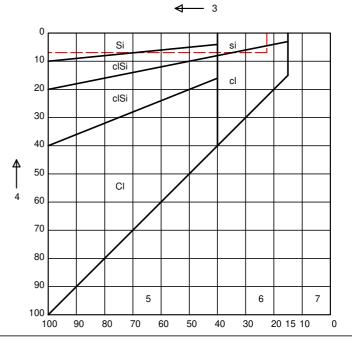
80

90

100

grclSi

grsiCl grCl


60

50

40

70

Kornkennziffer	1 2 7 0 0
DIN 4023-1	fS-mS,gs',u,t'
DIN 14688-1	fsifsiclfgrfgrFSaFSa
Bodengruppe	
Korngruppe	1.0 2.0
Geologische Bezeichnung	
Arbeitsweise	Sieb-/Schlämmanalyse
DIN EN 12620Tab. 2 - G	
DIN EN 12620Tab. 3 - G	G NR
DIN EN 12620Tab. 4 - G _{TC}	GTC NR
Block- / Steinanteil	mittel
Form der Körnungslinie	
AASHTO M 145-82/ UCSC	A-2-4 SM
d ₁₀ / d ₃₀ / d ₆₀	0,00 0,09 0,20
C _U / C _C	53,20 10,86
d _g / F _g / n	0,19 10,00 36,72
D _S / Median	1,88
k _f -Wert	1,490 * 10 ⁻⁶ [m/s] USBR/Bialas
D / d / D/d	
I _P / W _L	
Ton	6,89
Schluff	15,62
fein / mittel / grob	5,93 5,28 4,41
Sand	74,98
fein / mittel / grob	37,24 31,27 6,47
Kies	2,51
fein / mittel / grob	2,00 0,47 0,04
Steine / Blöcke	0,00

Bemerkungen:

Prüfungsnr.: RK-006042024c8 Anlage: 4 Blatt 29 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c8

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: im

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 7/24 (GP 7/1)

Entnahmetiefe: 0,0-0,3 m unter GOK

Bodenart: Sand, schluffig, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

Einwaage Siebanalyse me: Abgeschlämmter Anteil ma: 42,80 g 13,40 g %-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

ne': 76,16 na': 23,84

Gesamtgewicht der Probe mt: 56,20 g

Gesamigew		20 g		
	Siebdurchmesser	Rückstand	Rückstand	Durchgang
	[mm]	[g]	[%]	[%]
1	63,000	0,00	0,00	100,0
2	31,500	0,00	0,00	100,0
3	16,000	0,00	0,00	100,0
4	8,000	0,00	0,00	100,0
5	4,000	1,00	1,78	98,2
6	2,000	1,60	2,85	97,2
7	1,000	3,10	5,52	94,5
8	0,500	7,20	12,81	87,2
9	0,250	18,30	32,56	67,4
10	0,125	33,60	59,79	40,2
11	0,063	42,80	76,16	24
	Schale	42,80	76,16	24

Summe aller Siebrückstände:

S =

42,80 g

Größtkorn [mm]:

8,00

Siebverlust:

SV = me - S = SV' = (me - S) / me * 100 = SV' = (me - S) / me * 100 = SV' =

0,00 g 0,00 %

Fraktionsanteil	Prozentanteil
Ton	5,91
Schluff	17,52
Sandkorn	73,71
Feinsand	35,26

Sandkorn 73,71
Feinsand 35,26
Mittelsand 31,37
Grobsand 7,08
Kieskorn 2,85
Feinkies 2,19
Mittelkies 0,61
Grobkies 0,05

0,00

Bemerkungen:

Steine

Prüfungsnr.: RK-006042024c8 Anlage: 4 Blatt 30 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c8

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 7/24 (GP 7/1)

Entnahmetiefe: 0,0-0,3 m unter GOK

Bodenart: Sand, schluffig, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Aräometer Nr.: 1

Meniskuskorrektur mit Dispergierungsmittel: Cm = -0,3000 Natriumpyroph.

Ermittlung der Trockenmasse

Durch Trocknen (nach der Schlämmanalyse)

Behälter Nr.: 5 Trockene Probe + Behälter md + mB 113,40 g

 $\label{eq:Korndichte} \text{Korndichte ρ_S:} \qquad \qquad 2,650 \ \text{g/cm}^3 \qquad \qquad \text{Behälter mB} \underline{\qquad 100,00 \ \text{g}}$

Trockene Probe md 13,40 g

mu = md * (ρ S - 1) / ρ S = 100% der Lesung 8,34 g

 $a = 100 / \text{mu} * (R + C_{\theta}) = 11,99 * (R + C_{\theta}) \% \text{ von md}$

Uhrzeit Vorgabe: 00:00:00	Abgelaufene Zeit s/m/h/d	Aräometer- lesung R'=(ρ'-1)*10³	Lesung + Meniskuskorr. R=R'+Cm	Korndurch- messer d [mm]	Temperatur θ [°C]	Temp. korr. C _θ	Korr.Lesung $R+C_{\theta}$	Schlämm- probe a [%]	Gesamt- probe a _{tot} [%]
00:00:30	30 s	8,60	8,30	0,0691	21,3	0,24	8,54	102,37	23,84
00:01:00	1 m	8,10	7,80	0,0492	21,3	0,24	8,04	96,37	22,45
00:02:00	2 m	7,50	7,20	0,0351	21,3	0,24	7,44	89,18	20,77
00:05:00	5 m	6,80	6,50	0,0224	21,3	0,24	6,74	80,79	18,82
00:15:00	15 m	5,80	5,50	0,0131	21,3	0,24	5,74	68,81	16,03
00:45:00	45 m	4,90	4,60	0,0076	21,3	0,24	4,84	58,02	13,51
02:00:00	2 h	3,90	3,60	0,0047	21,6	0,30	3,90	46,73	10,88
06:00:00	6 h	2,60	2,30	0,0028	21,6	0,30	2,60	31,15	7,26
00:00:00	1 d	1,70	1,40	0,0014	22,1	0,40	1,80	21,55	5,02

Bemerkungen:

Prüfungs-Nr.: RK-006042024c8

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

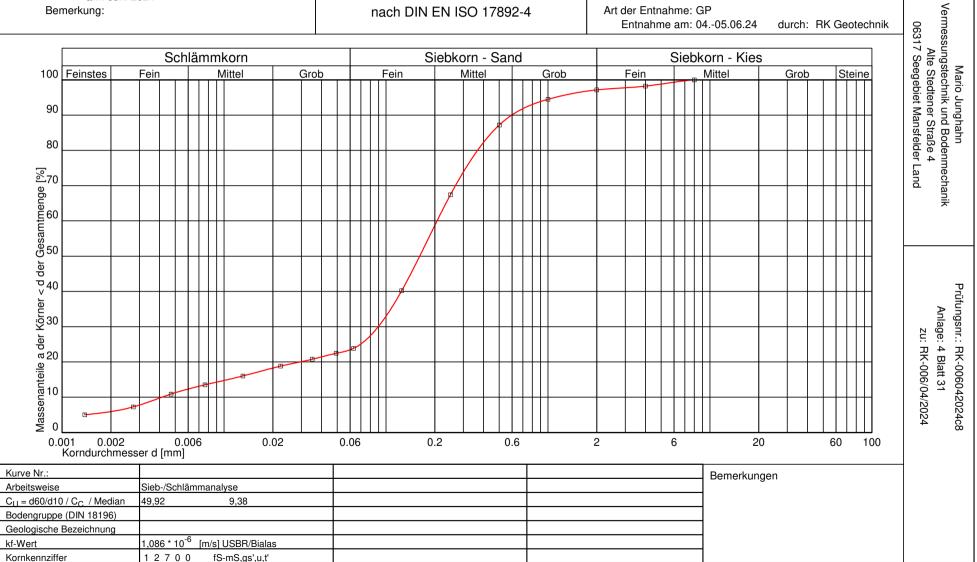
Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse


nach DIN EN ISO 17892-4

Entnahmestelle: BS 7/24 (GP 7/1)

Entnahmetiefe: 0,0-0,3 m unter GOK

Bodenart: Sand, schluffig, tonig

Art der Entnahme: GP

Prüfungsnr.: RK-006042024c8 Anlage: 4 Blatt 32 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c8

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 7/24 (GP 7/1)

Entnahmetiefe: 0.0-0.3 m unter GOK

Bodenart: Sand, schluffig, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

grsaSi

grsaCl

sagrSi

sagrCl

grsaSi

grsaCl

grsaSi

grsaCl

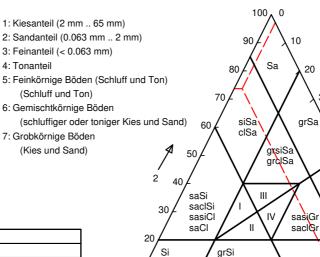
saGr

Gr

10

20

90


100

0

siGr clGr

30

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	0,004
20,0	0,029
30,0	0,090
40,0	0,124
50,0	0,161
60,0	0,207
70,0	0,268
80,0	0,367
90,0	0,597
100,0	8,000

clSi

siCl Cl

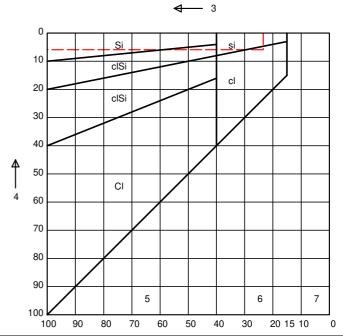
80

90

100

grclSi

grsiCl grCl


60

50

40

70

Kornkennziffer	1 2 7 0 0				
DIN 4023-1	fS-mS,gs',u,t'				
DIN 14688-1	fsifsiclfgrfgrFSaFSa				
Bodengruppe					
Korngruppe	1.0 2.0				
Geologische Bezeichnung					
Arbeitsweise	Sieb-/Schlämmanalyse				
DIN EN 12620Tab. 2 - G					
DIN EN 12620Tab. 3 - G	G NR				
DIN EN 12620Tab. 4 - G _{TC}	GTC NR				
Block- / Steinanteil	mittel				
Form der Körnungslinie					
AASHTO M 145-82/ UCSC	A-2-4 SM				
$d_{10} / d_{30} / d_{60}$	0,00 0,09 0,21				
C _U / C _C	49,92 9,38				
d _g / F _g / n	0,19 10,00 37,21				
D _S / Median	1,88				
k _f -Wert	1,086 * 10 ⁻⁶ [m/s] USBR/Bialas				
D / d / D/d					
I_P / W_L					
Ton	5,91				
Schluff	17,52				
fein / mittel / grob	6,41 5,95 5,16				
Sand	73,71				
fein / mittel / grob	35,26 31,37 7,08				
Kies	2,85				
fein / mittel / grob	2,19 0,61 0,05				
Steine / Blöcke	0,00				

Bemerkungen:

Prüfungsnr.: RK-006042024c9 Anlage: 4 Blatt 33

zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c9

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 8/24 (GP 8/5)

Entnahmetiefe: 2,0-3,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

Einwaage Siebanalyse me: Abgeschlämmter Anteil ma: 40,60 g 15,00 g

%-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

73,02 26,98

Gesamtgewicht der Probe mt. 55.60 a

Gesamtgewicht der Probe mt: 55,60 g							
	Siebdurchmesser	Rückstand	Rückstand	Durchgang			
	[mm]	[g]	[%]	[%]			
1	63,000	0,00	0,00	100,0			
2	31,500	0,00	0,00	100,0			
3	16,000	0,00	0,00	100,0			
4	8,000	0,00	0,00	100,0			
5	4,000	1,00	1,80	98,2			
6	2,000	1,90	3,42	96,6			
7	1,000	3,60	6,47	93,5			
8	0,500	8,10	14,57	85,4			
9	0,250	19,00	34,17	65,8			
10	0,125	33,90	60,97	39,0			
11	11 0,063		73,02	27			
	Schale	40,60	73,02	27			

Summe aller Siebrückstände:

S =

40,60 g Größtkorn [mm]:

8,00

Siebverlust:

SV = me - S =

SV' = (me - S) / me * 100 =

0,00

0,00 %

Fraktionsanteil	Prozentanteil		
Ton	6,41		
Schluff	20,23		
Sandkorn	69,94		
Feinsand	30,27		
Mittelsand	31,54		
Grobsand	8,13		
Kieskorn	3,42		
Feinkies	2,80		
Mittelkies	0,58		
Grobkies	0,04		
Steine	0,00		

Bemerkungen:

Prüfungsnr.: RK-006042024c9 Anlage: 4 Blatt 34 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c9

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: im

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 8/24 (GP 8/5)

Entnahmetiefe: 2,0-3,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Aräometer Nr.: 1

Meniskuskorrektur mit Dispergierungsmittel: Cm = -0,3000 Natriumpyroph.

Ermittlung der Trockenmasse

Durch Trocknen (nach der Schlämmanalyse)

Behälter Nr.: 6 Trockene Probe + Behälter md + mB 115,00 g

Korndichte ρ_S : 2,650 g/cm³ Behälter mB 100,00 g

Trockene Probe md 15,00 g

 $a = 100 / \text{mu} * (R + C_{\theta}) = 10.71 * (R + C_{\theta}) \% \text{ von md}$

Uhrzeit Vorgabe: 00:00:00	Abgelaufene Zeit s/m/h/d	Aräometer- lesung R'=(ρ'-1)*10³	Lesung + Meniskuskorr. R=R'+Cm	Korndurch- messer d [mm]	Temperatur θ [°C]	Temp. korr. C _θ	Korr.Lesung $R+C_{\theta}$	Schlämm- probe a [%]	Gesamt- probe a _{tot} [%]
00:00:30	30 s	10,30	10,00	0,0676	21,3	0,24	10,24	109,65	26,98
00:01:00	1 m	9,70	9,40	0,0482	21,3	0,24	9,64	103,23	25,40
00:02:00	2 m	8,90	8,60	0,0344	21,3	0,24	8,84	94,66	23,29
00:05:00	5 m	7,90	7,60	0,0221	21,3	0,24	7,84	83,95	20,66
00:15:00	15 m	6,80	6,50	0,0129	21,3	0,24	6,74	72,18	17,76
00:45:00	45 m	5,60	5,30	0,0076	21,3	0,24	5,54	59,33	14,60
02:00:00	2 h	4,30	4,00	0,0047	21,6	0,30	4,30	46,03	11,33
06:00:00	6 h	3,00	2,70	0,0027	21,6	0,30	3,00	32,11	7,90
00:00:00	1 d	1,80	1,50	0,0014	22,1	0,40	1,90	20,32	5,00

Bemerkungen:

Prüfungs-Nr.: RK-006042024c9

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

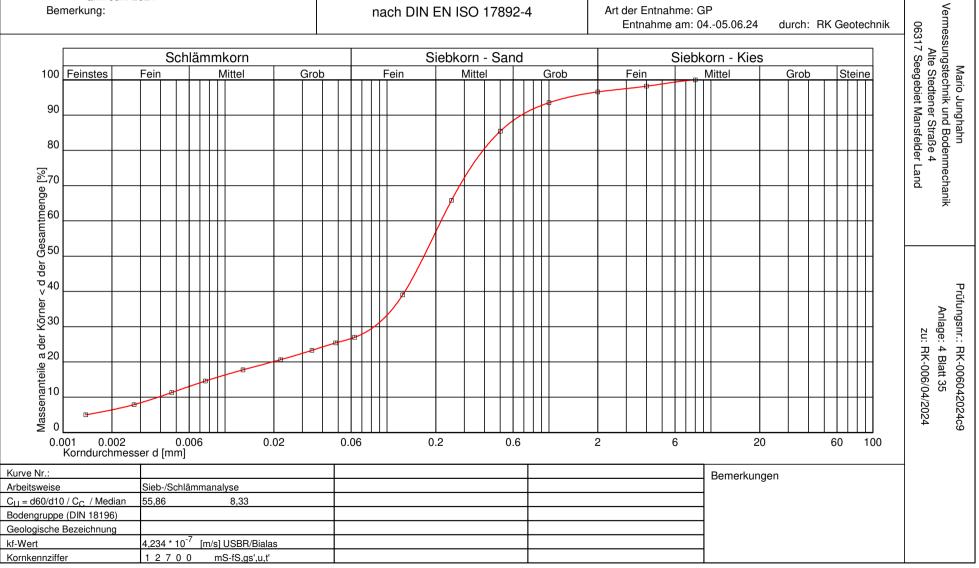
Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse


nach DIN EN ISO 17892-4

Entnahmestelle: BS 8/24 (GP 8/5)

Entnahmetiefe: 2,0-3,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Prüfungsnr.: RK-006042024c9 Anlage: 4 Blatt 36 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024c9

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 8/24 (GP 8/5)

Entnahmetiefe: 2,0-3,0 m unter GOK

Bodenart: Sand, Schluff, tonig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

grsaSi

grsaCl

sagrSi

sagrCl

grsaSi

grsaCl

grsaSi

grsaCl

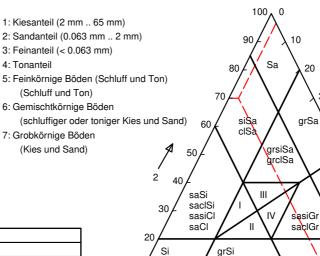
saGr

şiGr

30

Gr

10


20

90

100

0

Durchgang	Siebdurch-		
[%]	messer [mm]		
10,0	0,004		
20,0	0,020		
30,0	0,083		
40,0	0,129		
50,0	0,169		
60,0	0,216		
70,0	0,281		
80,0	0,391		
90,0	0,675		
100,0	8,000		

clSi

siCl Cl

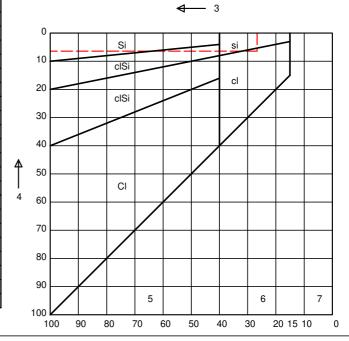
80

90

100

grclSi

grsiCl grCl


60

50

40

70

Kornkennziffer	1 2 7 0 0				
DIN 4023-1	mS-fS,gs',u,t'				
DIN 14688-1	msifsiclfgrfgrMSaFSa				
Bodengruppe					
Korngruppe	1.0 2.0				
Geologische Bezeichnung					
Arbeitsweise	Sieb-/Schlämmanalyse				
DIN EN 12620Tab. 2 - G					
DIN EN 12620Tab. 3 - G	G NR				
DIN EN 12620Tab. 4 - G _{TC}	GTC NR				
Block- / Steinanteil	mittel				
Form der Körnungslinie					
AASHTO M 145-82/ UCSC	A-2-4 SM				
d ₁₀ / d ₃₀ / d ₆₀	0,00 0,08 0,22				
C _U / C _C	55,86 8,33				
d _g / F _g / n	0,19 10,00 38,43				
D _S / Median	1,88				
k _f -Wert	4,234 * 10 ^{-/} [m/s] USBR/Bialas				
D / d / D/d					
I _P / W _L					
Ton	6,41				
Schluff	20,23				
fein / mittel / grob	6,64 7,07 6,52				
Sand	69,94				
fein / mittel / grob	30,27 31,54 8,13				
Kies	3,42				
fein / mittel / grob	2,80 0,58 0,04				
Steine / Blöcke	0,00				

Bemerkungen:

Prüfungsnr.: RK-006042024s01

Anlage: 4 Blatt 37 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s01

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 1/24 (GP 1/8)

Entnahmetiefe: 8,0-10,0

m unter GOK

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

Einwaage Siebanalyse me: 455,00 g Abgeschlämmter Anteil ma: 29,00 g

%-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma': 5,99

94,01

Gesamtgev	vicht der Probe mt: 484,0	0 g	· ·	·
	Siebdurchmesser [mm]	Rückstand [g]	Rückstand [%]	Durchgang [%]
1	63,000	0,00	0,00	100,0
2	31,500	0,00	0,00	100,0
3	16,000	0,00	0,00	100,0
4	8,000	5,00	1,03	99,0
5	4,000	11,00	2,27	97,7
6	2,000	19,00	3,93	96,1
7	1,000	54,00	11,16	88,8
8	0,500	210,00	43,39	56,6
9	0,250	403,00	83,26	16,7
10	0,125	441,00	91,12	8,9
11	0,063	455,00	94,01	6
	Schale	455.00	94.01	6

Summe aller Siebrückstände:

S =

455,00 g

Größtkorn [mm]:

16,00

Siebverlust:

SV = me - S =SV' = (me - S) / me * 100 = 0,00

0,00

Fraktionsanteil	Prozentanteil
Ton	
Schluff	5,99
Sandkorn	90,08
Feinsand	5,23
Mittelsand	56,16
Grobsand	28,69
Kieskorn	3,92
Feinkies	2,40
Mittelkies	1,61
Grobkies	0,00
Steine	0,01

Bemerkungen:

Prüfungs-Nr.: RK-006042024s01

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

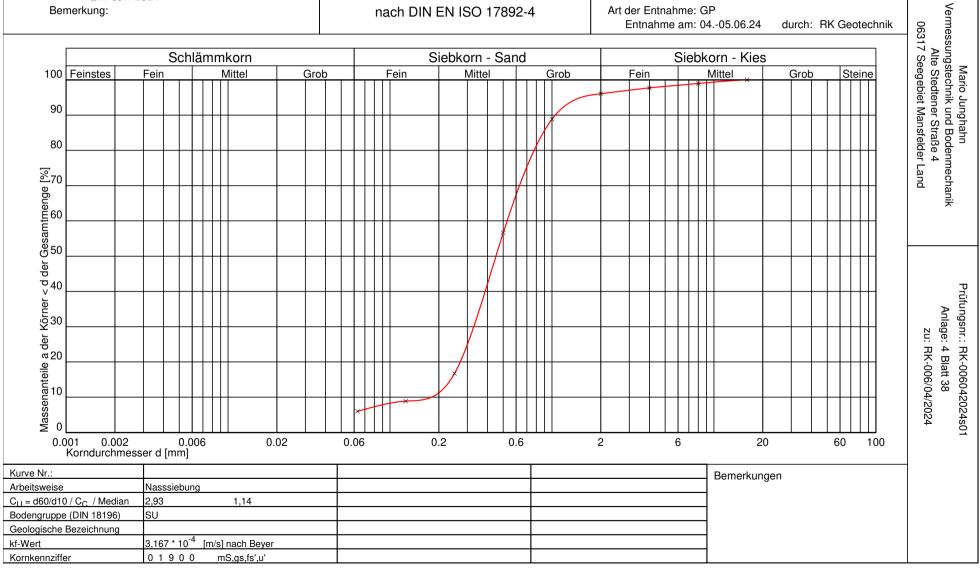
Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung

nach DIN EN ISO 17892-4

Entnahmestelle: BS 1/24 (GP 1/8)

Entnahmetiefe: 8,0-10,0


m unter GOK

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24

durch: RK Geotechnik

Prüfungsnr.: RK-006042024s01 Anlage: 4 Blatt 39

zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s01

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 1/24 (GP 1/8)

Entnahmetiefe: 8,0-10,0

Bodenart: Sand, schluffig

grSi grclSi

grsiCl grCl

60

50

40

70

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

siGr

clGr

30

20

10

m unter GOK

grsaSi grsaCl sagrSi sagrCl grsaSi grsaCl grsaSi grsaCl

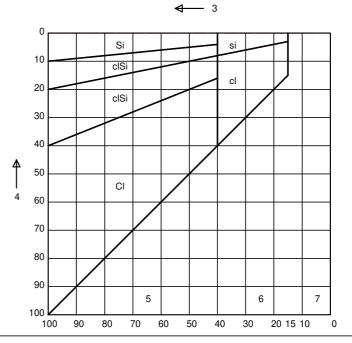
100

0

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	0,180
20,0	0,271
30,0	0,329
40,0	0,387
50,0	0,451
60,0	0,528
70,0	0,630
80,0	0,775
90,0	1,048
100,0	16,000

·	100, 0
1: Kiesanteil (2 mm 65 mm)	$/\lambda$
2: Sandanteil (0.063 mm 2 mm)	90 📈 🕽 10
3: Feinanteil (< 0.063 mm)	
4: Tonanteil	80 \ Sa \ \ 20
5: Feinkörnige Böden (Schluff und Ton)	
(Schluff und Ton) 70	0/ // \3
6: Gemischtkörnige Böden	/ / \ \
(schluffiger oder toniger Kies und Sand) 60	siSa 🖊 gr Ş a 🕻
7: Grobkörnige Böden	clSa /
(Kies und Sand)	\
/ -/	\ / grclSa \
2 40 /	X
saSi	$\wedge \parallel / \wedge$
30 / saclSi	
/ sasiCl	// IV sasiGr
	II saclGr

clSi


siCl Cl

80

90

100

Kornkennziffer	0 1 9 0 0
DIN 4023-1	mS,gs,fs',u'
DIN 14688-1	sifgrfgrcoMSa
Bodengruppe	SU
Korngruppe	>2.0 3.15
Geologische Bezeichnung	
Arbeitsweise	Nasssiebung
DIN EN 12620Tab. 2 - G	
DIN EN 12620Tab. 3 - G	G NR
DIN EN 12620Tab. 4 - G _{TC}	GTC NR
Block- / Steinanteil	mittel
Form der Körnungslinie	
AASHTO M 145-82/ UCSC	A-1-b SP-SM
d ₁₀ / d ₃₀ / d ₆₀	0,18 0,33 0,53
C _U / C _C	2,93 1,14
d _g / F _g / n	0,38 7,93 33,63
D _S / Median	2,97
k _f -Wert	3,167 * 10 ⁻⁴ [m/s] nach Beyer
D / d / D/d	
I _P / W _L	
Ton	0,00
Schluff	5,99
fein / mittel / grob	0,00 0,00 5,99
Sand	90,08
fein / mittel / grob	5,23 56,16 28,69
Kies	3,92
fein / mittel / grob	2,40 1,61 0,00
Steine / Blöcke	0,01

Bemerkungen:

Prüfungsnr.: RK-006042024s02

Anlage: 4 Blatt 40 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s02

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 2/24 (GP 2/3)

Entnahmetiefe: 0,8-2,0

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

Einwaage Siebanalyse me: Abgeschlämmter Anteil ma:

449,00 g 101,00 g

%-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

81,64 18,36

m unter GOK

Cocomtaquiabt dar Proba 550.00

Gesamtgewicht der Probe mt: 550,00 g				
	Siebdurchmesser	Rückstand	Rückstand	Durchgang
	[mm]	[g]	[%]	[%]
1	63,000	0,00	0,00	100,0
2	31,500	0,00	0,00	100,0
3	16,000	0,00	0,00	100,0
4	8,000	0,00	0,00	100,0
5	4,000	7,00	1,27	98,7
6	2,000	14,00	2,55	97,5
7	1,000	26,00	4,73	95,3
8	0,500	69,00	12,55	87,5
9	0,250	194,00	35,27	64,7
10	0,125	374,00	68,00	32,0
11	0,063	449,00	81,64	18
	Schale	449,00	81,64	18

Summe aller Siebrückstände:

S =

449,00 g

Größtkorn [mm]:

8,00

Siebverlust:

SV = me - S =SV' = (me - S) / me * 100 =

0,00

0,00

Fraktionsanteil	Prozentanteil
Ton	
Schluff	18,36
Sandkorn	79,09
Feinsand	35,40
Mittelsand	36,85
Grobsand	6,85
Kieskorn	2,55
Feinkies	2,12
Mittelkies	0,40
Grobkies	0,03
Steine	0,00

Bemerkungen:

Prüfungs-Nr.: RK-006042024s02

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

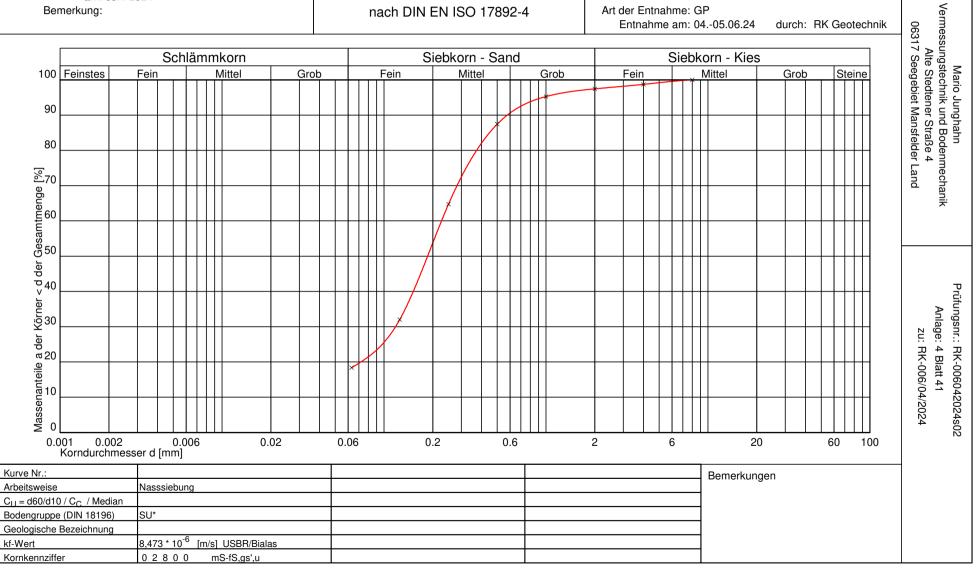
Bemerkung:

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung

nach DIN EN ISO 17892-4

Entnahmestelle: BS 2/24 (GP 2/3)


Entnahmetiefe: 0,8-2,0

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

m unter GOK

Prüfungsnr.: RK-006042024s02 Anlage: 4 Blatt 42

zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s02

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 2/24 (GP 2/3)

Entnahmetiefe: 0,8-2,0 m unter GOK

Bodenart: Sand,schluffig

grSi

grclSi

grsiCl

60

50

40

grCl

70

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

grsaSi grsaCl sagrSi sagrCl grsaSi grsaCl grsaSi grsaCl

saGr

Gr

10

90

100

0

siGr

clGr

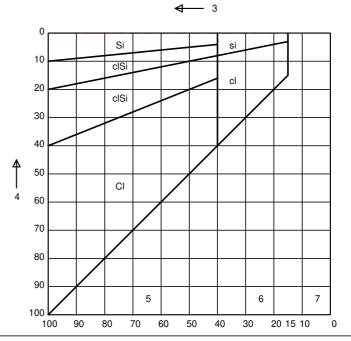
30

20

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	
20,0	0,072
30,0	0,118
40,0	0,152
50,0	0,186
60,0	0,226
70,0	0,282
80,0	0,373
90,0	0,576
100,0	8,000

	100 , 0
1: Kiesanteil (2 mm 65 mm)	100/
2: Sandanteil (0.063 mm 2 mm)	90 // \ 10
3: Feinanteil (< 0.063 mm)	1// \
4: Tonanteil	$80 \bigwedge$ Sa $\searrow 20$
5: Feinkörnige Böden (Schluff und Ton)	
(Schluff und Ton)	70 / \ \ 3
6: Gemischtkörnige Böden	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
(schluffiger oder toniger Kies und Sand) 60	∠ siSa 📉 grSa`
7: Grobkörnige Böden	CISa / \
(Kies und Sand) $\oint 50 \angle$	grsiSa
/ //	grclSa
2 40/	X
saSi	
30 / sacis	, , , , , , , , , , , , , , , , , , ,
sasiO	Ol / IV sasiGr

clSi


siCl Cl

80

90

100

Kornkennziffer	0 2 8 0 0
DIN 4023-1	mS-fS,gs',u
DIN 14688-1	sifgrfgrMSaFSa
Bodengruppe	SU*
Korngruppe	0.71 1.25
Geologische Bezeichnung	
Arbeitsweise	Nasssiebung
DIN EN 12620Tab. 2 - G	
DIN EN 12620Tab. 3 - G	G NR
DIN EN 12620Tab. 4 - G _{TC}	GTC NR
Block- / Steinanteil	mittel
Form der Körnungslinie	steil verlaufend
AASHTO M 145-82/ UCSC	A-2-4 SM
d ₁₀ / d ₃₀ / d ₆₀	0,00 0,12 0,23
C _U / C _C	0,00 0,00
d _q /F _q /n	0,19 5,00 0,00
D _S / Median	0,94
k _f -Wert	8,473 * 10 ⁻⁶ [m/s] USBR/Bialas
D / d / D/d	
I _P / W _L	
Ton	0,00
Schluff	18,36
fein / mittel / grob	0,00 0,00 18,36
Sand	79,09
fein / mittel / grob	35,40 36,85 6,85
Kies	2,55
fein / mittel / grob	2,12 0,40 0,03
Steine / Blöcke	0,00

Bemerkungen:

Prüfungsnr.: RK-006042024s03

Anlage: 4 Blatt 43 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s03

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: im

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 2/24 (GP 2/5)

Entnahmetiefe: 3,0-4,5

m unter GOK

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

Einwaage Siebanalyse me: Abgeschlämmter Anteil ma:

585,00 g 131,00 g

%-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

81,70 18,30

Gesamtgewicht der Probe mt: 716,00 g

Rückstand Siebdurchmesser Rückstand Durchgang [mm] [g] [%] [%] 63<u>,000</u> 0,00 0,00 100,0 1 2 31,500 0,00 0,00 100,0 3 16,000 0,00 0,00 100,0 4 8,000 0,00 0,00 100,0 5 4,000 12,00 1,68 98,3 2,000 23,00 3,21 96,8 6 7 43,00 6,01 94,0 1,000 8 0,500 101,00 14,11 85,9 9 0,250 270,00 37,71 62,3 10 0,125 477,00 66,62 33,4 585,00 81,70 18 11 0,063 585,00 Schale 81,70 18

Summe aller Siebrückstände:

S =

585,00 g

Größtkorn [mm]:

8,00

Siebverlust:

SV = me - S =SV' = (me - S) / me * 100 = 0,00

0,00 %

Fraktionsanteil	Prozentanteil
Ton	
Schluff	18,30
Sandkorn	78,49
Feinsand	34,11
Mittelsand	36,87
Grobsand	7,51
Kieskorn	3,21
Feinkies	2,63
Mittelkies	0,54
Grobkies	0,04
Steine	0,00

Bemerkungen:

Prüfungs-Nr.: RK-006042024s03

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

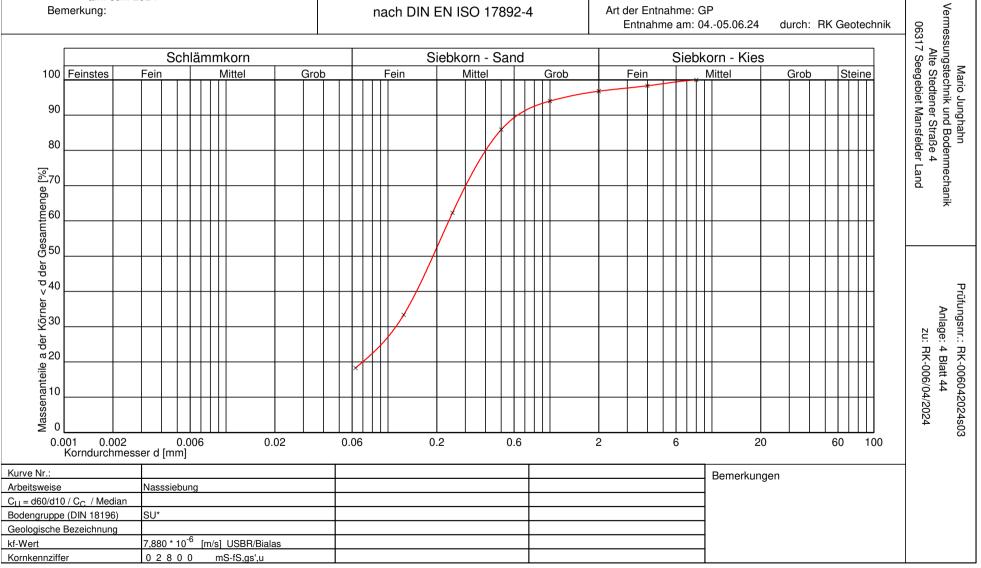
am: Juni 2024

Bemerkung:

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung

nach DIN EN ISO 17892-4


Entnahmestelle: BS 2/24 (GP 2/5)

Entnahmetiefe: 3,0-4,5 m unter GOK

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Prüfungsnr.: RK-006042024s03

Anlage: 4 Blatt 45 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s03

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 2/24 (GP 2/5)

Entnahmetiefe: 3,0-4,5

Bodenart: Sand, schluffig

grSi

70

grclSi grsiCl grCl

60

50

40

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

siGr

clGr

30

20

Gr

10

100

0

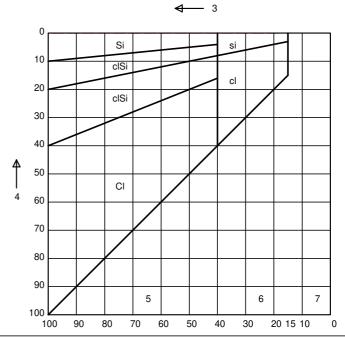
m unter GOK

grsaSi grsaCl sagrSi sagrCl grsaSi grsaCl grsaSi grsaCl

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	
20,0	0,070
30,0	0,112
40,0	0,150
50,0	0,189
60,0	0,237
70,0	0,301
80,0	0,401
90,0	0,631
100,0	8,000

	100 0
1: Kiesanteil (2 mm 65 mm)	100 0
2: Sandanteil (0.063 mm 2 mm)	90 / \ 10
3: Feinanteil (< 0.063 mm)	
4: Tonanteil	$_{80}$ \bigwedge Sa \setminus_{20}
5: Feinkörnige Böden (Schluff und Ton)	
(Schluff und Ton)	70/ \ \ \ 3
6: Gemischtkörnige Böden	
(schluffiger oder toniger Kies und Sa	
7: Grobkörnige Böden	clSa
(Kies und Sand)	grsi <mark>S</mark> a
/	grclSa
2	40/
	saSi III
30	saclSi /I
9/	sasiCl / IV / sasiGr
/	saCl // II \ / saclGr

clSi


siCl Cl

80

90

100

Kornkennziffer	0 2 8 0 0
DIN 4023-1	mS-fS,gs',u
DIN 14688-1	sifgrfgrMSaFSa
Bodengruppe	SU*
Korngruppe	0.71 1.25
Geologische Bezeichnung	
Arbeitsweise	Nasssiebung
DIN EN 12620Tab. 2 - G	
DIN EN 12620Tab. 3 - G	G NR
DIN EN 12620Tab. 4 - G _{TO}	GTC NR
Block- / Steinanteil	mittel
Form der Körnungslinie	steil verlaufend
AASHTO M 145-82/ UCSO	A-2-4 SM
d ₁₀ / d ₃₀ / d ₆₀	0,00 0,11 0,24
C _U / C _C	0,00 0,00
d _g / F _g / n	0,19 5,00 0,00
D _S / Median	0,94
k _f -Wert	7,880 * 10 ⁻⁶ [m/s] USBR/Bialas
D / d / D/d	
I _P / W _L	
Ton	0,00
Schluff	18,30
fein / mittel / grob	0,00 0,00 18,30
Sand	78,49
fein / mittel / grob	34,11 36,87 7,51
Kies	3,21
fein / mittel / grob	2,63 0,54 0,04
Steine / Blöcke	0,00

Bemerkungen:

Prüfungsnr.: RK-006042024s04

Anlage: 4 Blatt 46 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s04

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 3/24 (GP 3/5)

Entnahmetiefe: 3,0-5,0

m unter GOK

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Größtkorn [mm]:

Siebanalyse:

Einwaage Siebanalyse me: 252,00 g Abgeschlämmter Anteil ma:

%-Anteil der Siebeinwaage me' = 100 - ma' me': 32,00 g %-Anteil der Abschlämmung ma' = 100 - me' ma':

88,73

11,27

8,00

Gesamtgewicht der Probe mt: 284.00 a

Gesamtgew	<u>/icht der Probe</u> mt: 284,0	JU g		
	Siebdurchmesser [mm]	Rückstand [g]	Rückstand [%]	Durchgang [%]
1	63,000	0,00	0,00	100,0
2	31,500	0,00	0,00	100,0
3	16,000	0,00	0,00	100,0
4	8,000	0,00	0,00	100,0
5	4,000	2,00	0,70	99,3
6	2,000	4,00	1,41	98,6
7	1,000	9,00	3,17	96,8
8	0,500	51,00	17,96	82,0
9	0,250	179,00	63,03	37,0
10	0,125	233,00	82,04	18,0
11	0,063	252,00	88,73	11
·	Schale	252 00	88 73	11

Summe aller Siebrückstände:

Siebverlust:

252,00 g S =

SV = me - S =

0,00

SV' = (me - S) / me * 100 =0,00

Fraktionsanteil	Prozentanteil
Ton	
Schluff	11,27
Sandkorn	87,32
Feinsand	16,15
Mittelsand	61,93
Grobsand	9,24
Kieskorn	1,41
Feinkies	1,17
Mittelkies	0,22
Grobkies	0,02
Steine	0.00

Bemerkungen:

Prüfungs-Nr.: RK-006042024s04

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

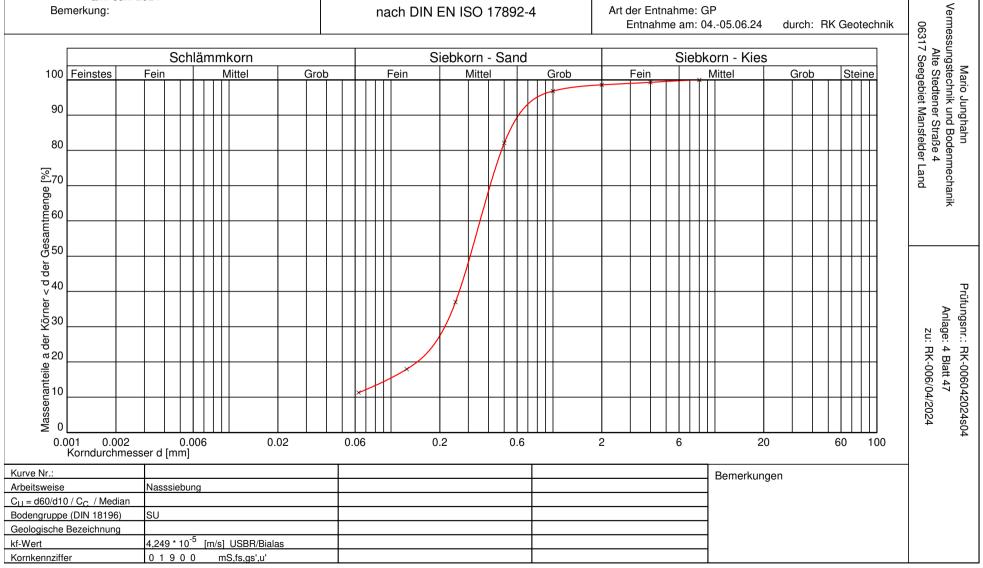
Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung

nach DIN EN ISO 17892-4

Entnahmestelle: BS 3/24 (GP 3/5)

Entnahmetiefe: 3,0-5,0


m unter GOK

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24

durch: RK Geotechnik

Prüfungsnr.: RK-006042024s04

Anlage: 4 Blatt 48 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s04

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 3/24 (GP 3/5)

Entnahmetiefe: 3,0-5,0 m unter GOK

Bodenart: Sand, schluffig

grSi

grclSi

grsiCl

60

50

40

grCl

70

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

grsaSi

grsaCl

sagrSi

sagrCl

grsaSi

grsaCl

grsaSi

grsaCl

saGr

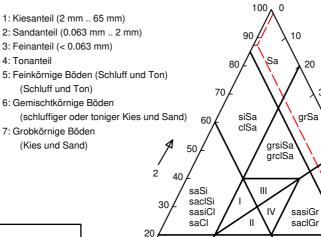
Gr

10

20

90

100


0

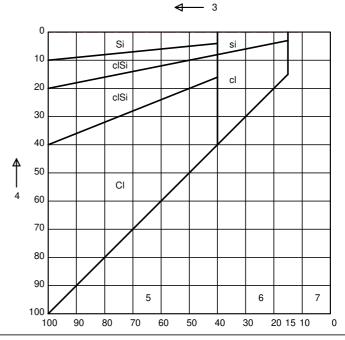
siGr

clGr

30

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	
20,0	0,145
30,0	0,215
40,0	0,264
50,0	0,308
60,0	0,354
70,0	0,409
80,0	0,481
90,0	0,613
100,0	8,000

clSi


siCl Cl

80

90

100

Kornkennziffer	0 1 9 0 0
DIN 4023-1	mS,fs,gs',u'
DIN 14688-1	sifgrfgrMSa
Bodengruppe	SU
Korngruppe	1.0 2.0
Geologische Bezeichnung	
Arbeitsweise	Nasssiebung
DIN EN 12620Tab. 2 - G	
DIN EN 12620Tab. 3 - G	G NR
DIN EN 12620Tab. 4 - G _{TO}	GTC NR
Block- / Steinanteil	mittel
Form der Körnungslinie	steil verlaufend
AASHTO M 145-82/ UCSO	A-2-4 SM
d ₁₀ / d ₃₀ / d ₆₀	0,00 0,21 0,35
C _U / C _C	0,00 0,00
d _q /F _q /n	0,38 5,00 0,00
D _S / Median	1,88
k _f -Wert	4,249 * 10 ⁻⁵ [m/s] USBR/Bialas
D / d / D/d	
I _P / W _L	
Ton	0,00
Schluff	11,27
fein / mittel / grob	0,00 0,00 11,27
Sand	87,32
fein / mittel / grob	16,15 61,93 9,24
Kies	1,41
fein / mittel / grob	1,17 0,22 0,02
Steine / Blöcke	0,00

Bemerkungen:

Prüfungsnr.: RK-006042024s05

Anlage: 4 Blatt 49 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s05

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: im

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 4/24 (GP 4/6)

Entnahmetiefe: 6,0-7,0

m unter GOK

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

Einwaage Siebanalyse me: 454,00 g Abgeschlämmter Anteil ma: 31,00 g

%-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

93.61

6,39

Gesamtgewicht der Probe mt: 485<u>,00</u> g Rückstand Siebdurchmesser Rückstand Durchgang [mm] [g] [%] [%] 63<u>,000</u> 0,00 0,00 100,0 1 2 31,500 0,00 0,00 100,0 3 16,000 0,00 0,00 100,0 8,000 4 0,00 0,00 100,0 5 4,000 7,00 1,44 98,6 2,000 14,00 2,89 97,1 6 7 47,00 9,69 90,3 1,000 8 0,500 210,00 43,30 56,7 9 0,250 396,00 81,65 18,4 438,00 10 0,125 90,31 9,7 454,00 93,61 6 11 0,063

Summe aller Siebrückstände:

454,00 g S =

93,61

Größtkorn [mm]: 8,00

6

Siebverlust:

SV = me - S =SV' = (me - S) / me * 100 =

Schale

0,00

454,00

0,00 %

Fraktionsanteil	Prozentanteil
Ton	
Schluff	6,39
Sandkorn	90,72
Feinsand	6,44
Mittelsand	54,81
Grobsand	29,48
Kieskorn	2,89
Feinkies	2,43
Mittelkies	0,43
Grobkies	0,03
Steine	0,00

Bemerkungen:

Prüfungs-Nr.: RK-006042024s05

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

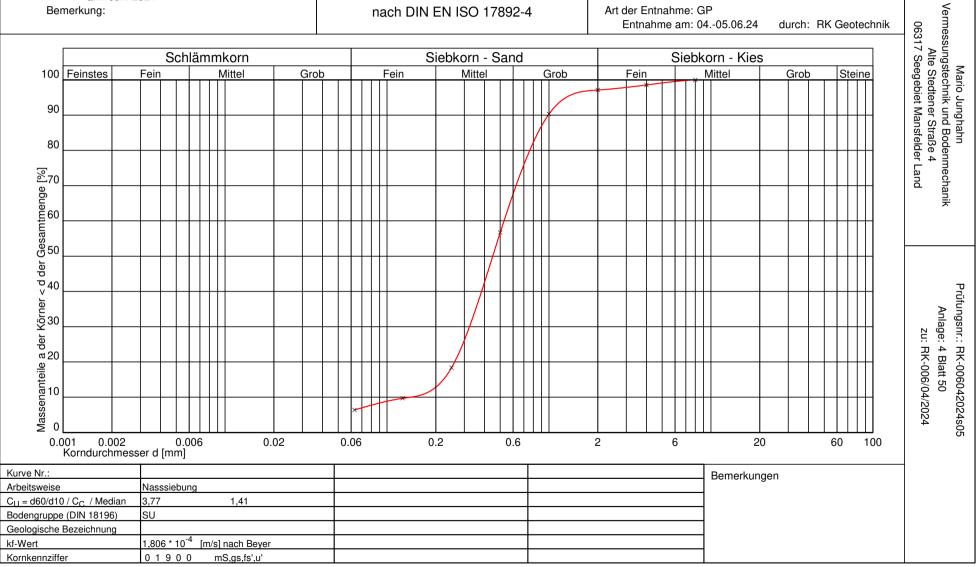
am: Juni 2024

Bemerkung:

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung

nach DIN EN ISO 17892-4


Entnahmestelle: BS 4/24 (GP 4/6)

Entnahmetiefe: 6,0-7,0 m unter GOK

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Prüfungsnr.: RK-006042024s05 Anlage: 4 Blatt 51 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s05

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 4/24 (GP 4/6)

Entnahmetiefe: 6,0-7,0 m unter GOK

Bodenart: Sand, schluffig

grSi

grclSi

grsiCl

60

50

40

grCl

70

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

grsaSi

grsaCl

sagrSi

sagrCl

grsaSi

grsaCl

grsaSi

grsaCl

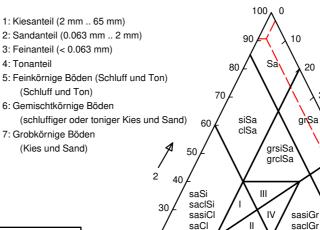
90

100

0

saGr

siGr


clGr

30

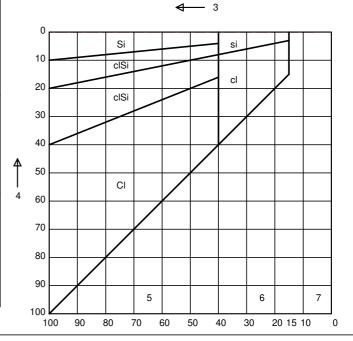
20

10

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	0,140
20,0	0,261
30,0	0,323
40,0	0,383
50,0	0,450
60,0	0,527
70,0	0,626
80,0	0,760
90,0	0,989
100,0	8,000

20

100


clSi

siCl Cl

80

90

Kornkennziffer	0 1 9 0 0
DIN 4023-1	mS,gs,fs',u'
DIN 14688-1	sifgrfgrMSa
Bodengruppe	SU
Korngruppe	>3.15 5.6
Geologische Bezeichnung	
Arbeitsweise	Nasssiebung
DIN EN 12620Tab. 2 - G	
DIN EN 12620Tab. 3 - G	G NR
DIN EN 12620Tab. 4 - G _{TO}	GTC NR
Block- / Steinanteil	mittel
Form der Körnungslinie	
AASHTO M 145-82/ UCSO	A-1-b
$d_{10} / d_{30} / d_{60}$	0,14 0,32 0,53
C _U / C _C	3,77 1,41
d _q / F _q / n	0,38 8,77 33,86
D _S / Median	3,29
k _f -Wert	1,806 * 10 ⁻⁴ [m/s] nach Beyer
D / d / D/d	
I _P / W _L	
Ton	0,00
Schluff	6,39
fein / mittel / grob	0,00 0,00 6,39
Sand	90,72
fein / mittel / grob	6,44 54,81 29,48
Kies	2,89
fein / mittel / grob	2,43 0,43 0,03
Steine / Blöcke	0,00

Bemerkungen:

Prüfungsnr.: RK-006042024s06

Anlage: 4 Blatt 52 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s06

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 4/24 (GP 4/7)

Entnahmetiefe: 7,0-8,0

m unter GOK

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

Einwaage Siebanalyse me: Abgeschlämmter Anteil ma:

387,00 g 46,00 g %-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

me': 89,38 ma': 10,62

Gesamtgewicht der Probe mt: 433,00 g

	Siebdurchmesser [mm]	Rückstand [g]	Rückstand [%]	Durchgang [%]
1	63,000	0,00	0,00	100,0
2	31,500	0,00	0,00	100,0
3	16,000	0,00	0,00	100,0
4	8,000	0,00	0,00	100,0
5	4,000	5,00	1,15	98,8
6	2,000	10,00	2,31	97,7
7	1,000	36,00	8,31	91,7
8	0,500	147,00	33,95	66,1
9	0,250	313,00	72,29	27,7
10	0,125	366,00	84,53	15,5
11	0,063	387,00	89,38	11
	Schale	387,00	89,38	11

Summe aller Siebrückstände:

S = :

387,00 g 0,00 g

Größtkorn [mm]: 8,00

Siebverlust:

SV = me - S = SV' = (me - S) / me * 100 =

0,03

0,00

0,00 g 0,00 %

Fraktionsanteil	Prozentanteil
Ton	
Schluff	10,62
Sandkorn	87,07
Feinsand	10,39
Mittelsand	54,09
Grobsand	22,58
Kieskorn	2,31
Feinkies	1,91
Mittelkies	0,37

Bemerkungen:

Steine

Grobkies

Prüfungs-Nr.: RK-006042024s06

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

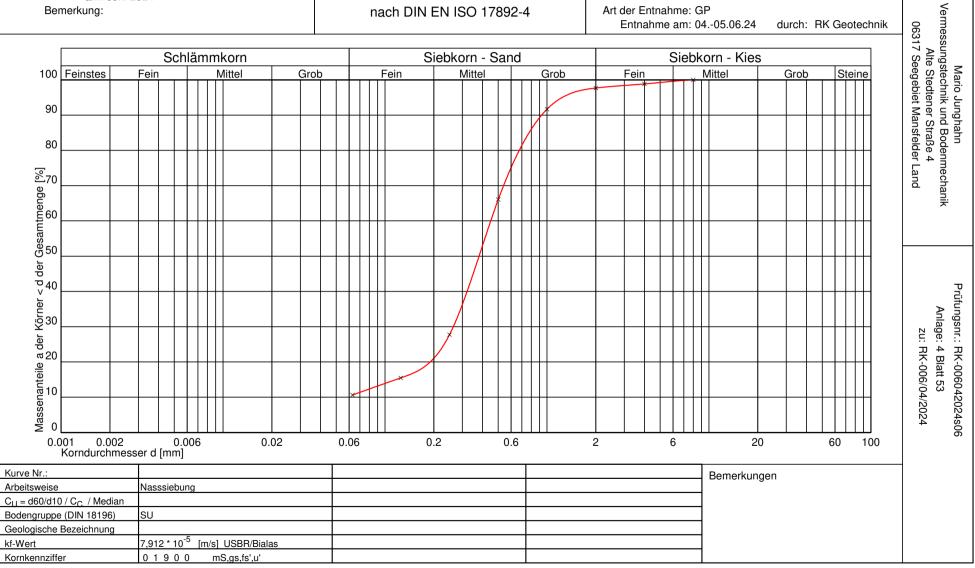
am: Juni 2024

Bemerkung:

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung

nach DIN EN ISO 17892-4


Entnahmestelle: BS 4/24 (GP 4/7)

Entnahmetiefe: 7,0-8,0 m unter GOK

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Prüfungsnr.: RK-006042024s06 Anlage: 4 Blatt 54 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s06

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 4/24 (GP 4/7)

Entnahmetiefe: 7,0-8,0 m unter GOK

Bodenart: Sand, schluffig

grSi

grclSi

grsiCl

60

50

40

grCl

70

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

grsaSi

grsaCl

sagrSi

sagrCl

grsaSi

grsaCl

grsaSi

grsaCl

saGr

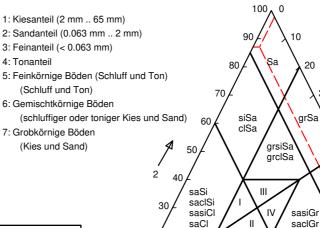
Gr

10

20

90

100


0

siGr

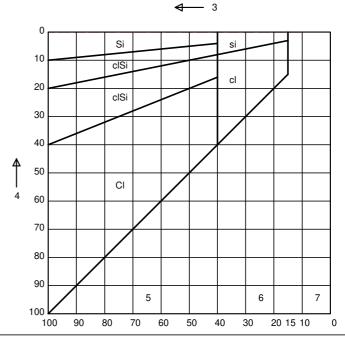
clGr

30

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	
20,0	0,190
30,0	0,264
40,0	0,321
50,0	0,380
60,0	0,449
70,0	0,539
80,0	0,674
90,0	0,926
100,0	8,000

20

100


clSi

siCl Cl

80

90

Kornkennziffer	0 1 9 0 0
DIN 4023-1	mS,gs,fs',u'
DIN 14688-1	sifgrfgrMSa
Bodengruppe	SU
Korngruppe	1.0 2.0
Geologische Bezeichnung	
Arbeitsweise	Nasssiebung
DIN EN 12620Tab. 2 - G	
DIN EN 12620Tab. 3 - G	G NR
DIN EN 12620Tab. 4 - G _{TC}	GTC NR
Block- / Steinanteil	mittel
Form der Körnungslinie	steil verlaufend
AASHTO M 145-82/ UCSC	A-2-4
d ₁₀ / d ₃₀ / d ₆₀	0,00 0,26 0,45
C _U / C _C	0,00 0,00
d _q /F _q /n	0,38 5,00 0,00
D _S / Median	1,88
k _f -Wert	7,912 * 10 ⁻⁵ [m/s] USBR/Bialas
D / d / D/d	
I _P / W _L	
Ton	0,00
Schluff	10,62
fein / mittel / grob	0,00 0,00 10,62
Sand	87,07
fein / mittel / grob	10,39 54,09 22,58
Kies	2,31
fein / mittel / grob	1,91 0,37 0,03
Steine / Blöcke	0,00

Bemerkungen:

Prüfungsnr.: RK-006042024s07

Anlage: 4 Blatt 55 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s07

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: im

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 6/24 (GP 6/5)

Entnahmetiefe: 2,2-3,0

m unter GOK

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Größtkorn [mm]:

Siebanalyse:

Einwaage Siebanalyse me: 580,00 g Abgeschlämmter Anteil ma: 132,00 g

%-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

81,46

18,54

8,00

Gesamtgewicht der Probe mt: 712<u>,00</u> g

Rückstand Siebdurchmesser Rückstand Durchgang [mm] [g] [%] [%] 63<u>,000</u> 0,00 0,00 100,0 1 2 31,500 0,00 0,00 100,0 3 16,000 0,00 0,00 100,0 8,000 4 0,00 0,00 100,0 5 4,000 14,00 1,97 98,0 2,000 23,00 3,23 96,8 6 7 47,00 6,60 93,4 1,000 82,7 8 0,500 123,00 17,28 9 0,250 304,00 42,70 57,3 29,5 10 0,125 502,00 70,51 580,00 81,46 11 0,063 19 580,00 Schale 81,46 19

580,00 g Summe aller Siebrückstände: S = SV = me - S =0,00 Siebverlust:

SV' = (me - S) / me * 100 =0,00 %

Fraktionsanteil	Prozentanteil
Ton	
Schluff	18,54
Sandkorn	78,23
Feinsand	28,86
Mittelsand	39,44
Grobsand	9,92
Kieskorn	3,23
Feinkies	2,51
Mittelkies	0,67
Grobkies	0,05
Steine	0,00

Bemerkungen:

Prüfungs-Nr.: RK-006042024s07

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

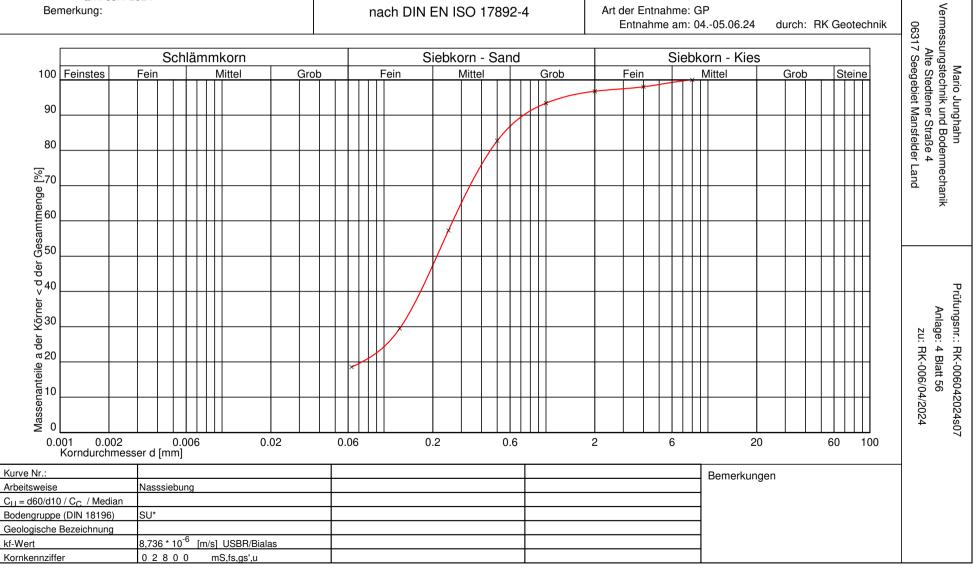
am: Juni 2024

Bemerkung:

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung

nach DIN EN ISO 17892-4


Entnahmestelle: BS 6/24 (GP 6/5)

Entnahmetiefe: 2,2-3,0 m unter GOK

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Prüfungsnr.: RK-006042024s07 Anlage: 4 Blatt 57 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s07

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 6/24 (GP 6/5)

Entnahmetiefe: 2,2-3,0 m unter GOK

Bodenart: Sand, schluffig

grSi

grclSi

grsiCl

60

50

40

grCl

70

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

grsaSi grsaCl sagrSi sagrCl grsaSi grsaCl grsaSi grsaCl

saGr

Gr

10

90

100

0

siGr

clGr

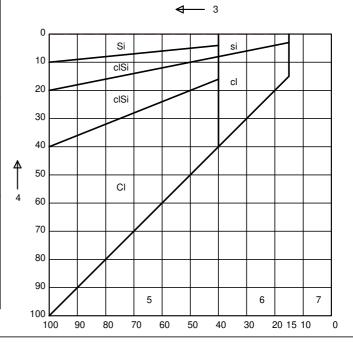
30

20

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	
20,0	0,073
30,0	0,127
40,0	0,168
50,0	0,212
60,0	0,266
70,0	0,339
80,0	0,454
90,0	0,726
100,0	8,000

	100 , 0
1: Kiesanteil (2 mm 65 mm)	
2: Sandanteil (0.063 mm 2 mm)	90 / \ 10
3: Feinanteil (< 0.063 mm)	1// \
4: Tonanteil	$_{80}\bigwedge$ Sa $_{20}$
5: Feinkörnige Böden (Schluff und Ton)	
(Schluff und Ton)	70 / \ \ 3
6: Gemischtkörnige Böden	\mathcal{A}
(schluffiger oder toniger Kies und Sand) 60	∠ siSa 📉 grSa`
7: Grobkörnige Böden	CISa / \
(Kies und Sand) $\oint 50 \angle$	grsiSa
/ //	grclSa
2 40/	
saSi	
30 / sacis	
sasiC	Ol / IV sasiGr

clSi


siCl Cl

80

90

100

Kornkennziffer	0 2 8 0 0
DIN 4023-1	mS,fs,gs',u
DIN 14688-1	sifgrfgrMSa
Bodengruppe	SU*
Korngruppe	0.71 1.25
Geologische Bezeichnung	
Arbeitsweise	Nasssiebung
DIN EN 12620Tab. 2 - G	
DIN EN 12620Tab. 3 - G	G NR
DIN EN 12620Tab. 4 - G _{TC}	GTC NR
Block- / Steinanteil	mittel
Form der Körnungslinie	steil verlaufend
AASHTO M 145-82/ UCSC	A-2-4 SM
d ₁₀ / d ₃₀ / d ₆₀	0,00 0,13 0,27
C _U / C _C	0,00 0,00
d _a / F _a / n	0,19 5,00 0,00
D _S / Median	0,94
k _f -Wert	8,736 * 10 ⁻⁶ [m/s] USBR/Bialas
D / d / D/d	
I _P / W _L	
Ton	0,00
Schluff	18,54
fein / mittel / grob	0,00 0,00 18,54
Sand	78,23
fein / mittel / grob	28,86 39,44 9,92
Kies	3,23
fein / mittel / grob	2,51 0,67 0,05
Steine / Blöcke	0,00

Bemerkungen:

Prüfungsnr.: RK-006042024s08

Anlage: 4 Blatt 58 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s08

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 6/24 (GP 6/8)

Entnahmetiefe: 5,0-6,0 m unter GOK

Bodenart: Sand, kiesig, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Größtkorn [mm]:

Siebanalyse:

Einwaage Siebanalyse me: 261,00 g Abgeschlämmter Anteil ma: 17,00 g %-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

me': 93,88

6,12

8,00

Gesamtgewicht der Probe mt: 278,00 g

Rückstand Siebdurchmesser Rückstand Durchgang [mm] [g] [%] [%] 0,00 0,00 100,0 1 63,000 2 31,500 0,00 0,00 100,0 3 16,000 0,00 0,00 100,0 4 8,000 0,00 0,00 100,0 5 4,000 5,00 1,80 98,2 2,000 20,00 7,19 92,8 6 7 48,00 82,7 1,000 17,27 8 0,500 108,00 38,85 61,2 9 0,250 198,00 71,22 28,8 12,2 10 0,125 244,00 87,77 261,00 6 11 0,063 93,88 261,00 Schale 93,88 6

Summe aller Siebrückstände: S = 261,00 g Siebverlust: SV = me - S = 0,00 g

SV' = (me - S) / me * 100 = 0,00 %

Fraktionsanteil	Prozentanteil
Ton	
Schluff	6,12
Sandkorn	86,69
Feinsand	15,29
Mittelsand	47,01
Grobsand	24,39
Kieskorn	7,20
Feinkies	6,80
Mittelkies	0,37
Grobkies	0,02
Steine	0.00

Bemerkungen:

Prüfungs-Nr.: RK-006042024s08

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

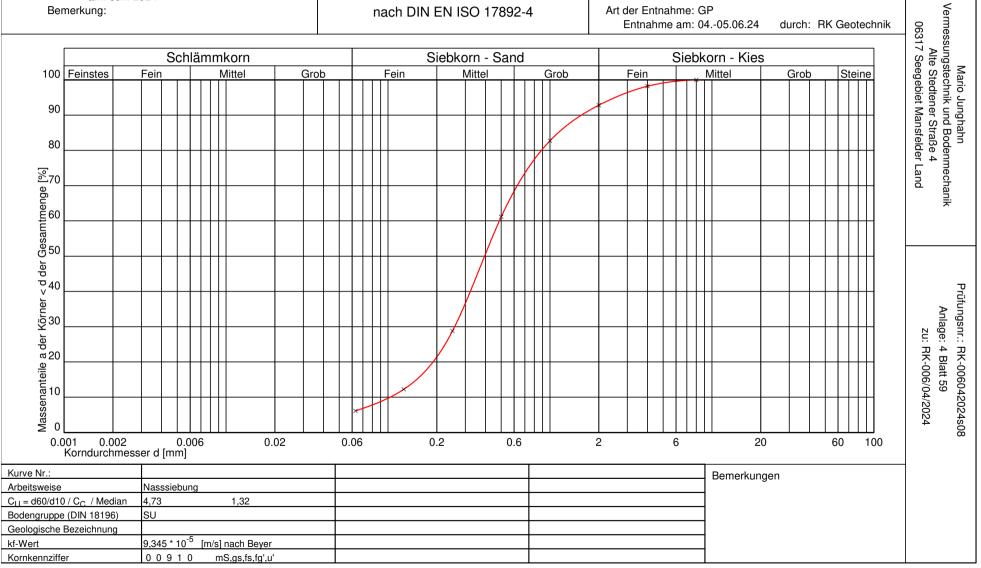
am: Juni 2024

Bemerkung:

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung

nach DIN EN ISO 17892-4


Entnahmestelle: BS 6/24 (GP 6/8)

Entnahmetiefe: 5,0-6,0 m unter GOK

Bodenart: Sand, kiesig, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Prüfungsnr.: RK-006042024s08

Anlage: 4 Blatt 60 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s08

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 6/24 (GP 6/8)

grSi

grclSi

grsiCl grCl

60

50

40

70

Entnahmetiefe: 5,0-6,0 m unter GOK

Bodenart: Sand, kiesig, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

siGr

clGr

30

20

10

grsaSi grsaCl sagrSi sagrCl grsaSi grsaCl grsaSi grsaCl

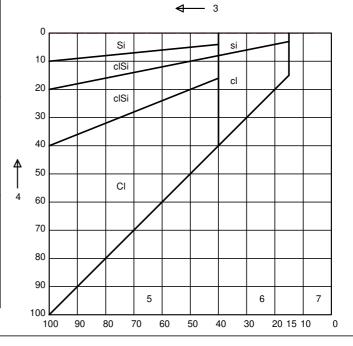
100

0

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	0,103
20,0	0,190
30,0	0,258
40,0	0,322
50,0	0,395
60,0	0,487
70,0	0,627
80,0	0,885
90,0	1,561
100,0	8,000

	100 0
1: Kiesanteil (2 mm 65 mm)	100 0
2: Sandanteil (0.063 mm 2 mm)	90 🗸 🔪 10
3: Feinanteil (< 0.063 mm)	-
4: Tonanteil	$_{80}$ \bigwedge Sa \bigwedge_{20}
5: Feinkörnige Böden (Schluff und Ton)	
(Schluff und Ton)	70 / \ \ \ \ \ 3
6: Gemischtkörnige Böden	$\gamma \sim V \setminus \gamma$
(schluffiger oder toniger Kies und Sand) 60	o
7: Grobkörnige Böden	CISa / \
(Kies und Sand) A 50	grsiSa
/ %	\ / grclSa \
2 40	V = X
saSi	\wedge
30 / sack	/ / / /
/ sasi	. / / /
saCl	II \ saclGr

clSi


siCl Cl

80

90

100

Kornkennziffer	0 0 9 1 0
DIN 4023-1	mS,gs,fs,fg',u'
DIN 14688-1	fgrfgrsiMSa
Bodengruppe	SU
Korngruppe	>3.15 5.6
Geologische Bezeichnung	
Arbeitsweise	Nasssiebung
DIN EN 12620Tab. 2 - G	
DIN EN 12620Tab. 3 - G	G NR
DIN EN 12620Tab. 4 - G _{TC}	GTC NR
Block- / Steinanteil	mittel
Form der Körnungslinie	
AASHTO M 145-82/ UCSC	A-3
$d_{10} / d_{30} / d_{60}$	0,10 0,26 0,49
C _U / C _C	4,73 1,32
d _g / F _g / n	0,38 9,73 34,38
D _S / Median	3,65
k _f -Wert	9,345 * 10 ⁻⁵ [m/s] nach Beyer
D / d / D/d	
I _P / W _L	
Ton	0,00
Schluff	6,12
fein / mittel / grob	0,00 0,00 6,12
Sand	86,69
fein / mittel / grob	15,29 47,01 24,39
Kies	7,20
fein / mittel / grob	6,80 0,37 0,02
Steine / Blöcke	0,00

Bemerkungen:

Prüfungsnr.: RK-006042024s09

Anlage: 4 Blatt 61 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s09

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: im

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 6/24 (GP 6/9)

Entnahmetiefe: 6,0-7,0

m unter GOK

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

Einwaage Siebanalyse me: 230,00 g Abgeschlämmter Anteil ma:

23,00 g

%-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

90.91

9,09

8,00

Gesamtgewicht der Probe mt: 253<u>,00</u> g

Siebdurchmesser [mm] 63<u>,000</u> 1 2 31,500

Rückstand Rückstand Durchgang [g] [%] [%] 0,00 0,00 100,0 0,00 0,00 100,0 3 16,000 0,00 0,00 100,0 4 8,000 0,00 0,00 100,0 5 4,000 2,00 0,79 99,2 2,000 6,00 2,37 97,6 6 7 13,00 94,9 1,000 5,14 8 0,500 43,00 17,00 83,0 9 0,250 122,00 48,22 51,8 20,9 10 0,125 200,00 79,05 230,00 90,91 11 0,063 9 230,00 Schale 90,91 9

Summe aller Siebrückstände:

Siebverlust:

230,00 g S =

SV = me - S =

0,00

Größtkorn [mm]:

SV' = (me - S) / me * 100 =0,00 %

Fraktionsanteil	Prozentanteil
Ton	
Schluff	9,09
Sandkorn	88,54
Feinsand	31,38
Mittelsand	47,47
Grobsand	9,69
Kieskorn	2,37
Feinkies	2,16
Mittelkies	0,19
Grobkies	0,01
Steine	0,00

Bemerkungen:

Prüfungs-Nr.: RK-006042024s09

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

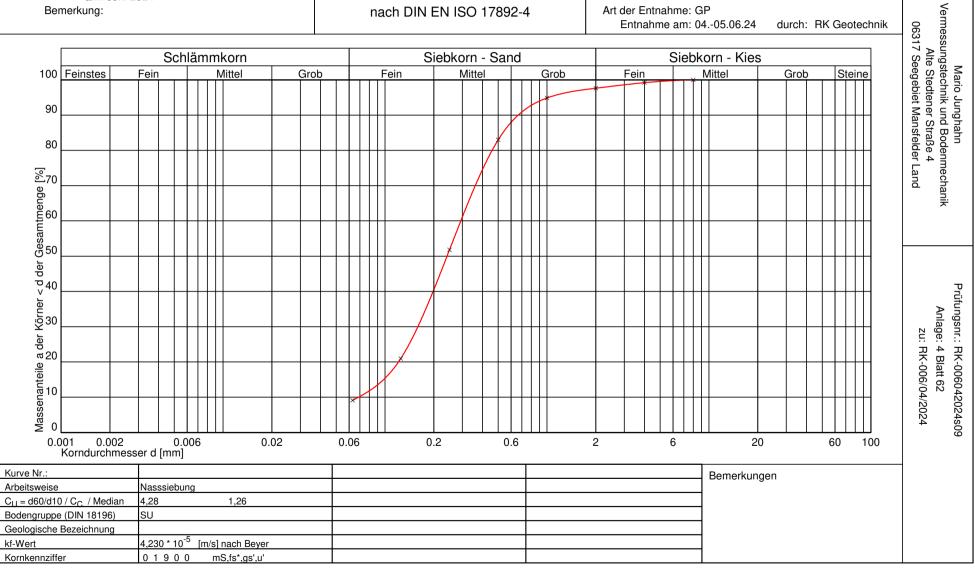
am: Juni 2024

Bemerkung:

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung

nach DIN EN ISO 17892-4


Entnahmestelle: BS 6/24 (GP 6/9)

Entnahmetiefe: 6,0-7,0 m unter GOK

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Prüfungsnr.: RK-006042024s09

Anlage: 4 Blatt 63 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s09

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 6/24 (GP 6/9)

Entnahmetiefe: 6,0-7,0 m unter GOK

Bodenart: Sand, schluffig

grSi

grclSi

grsiCl

60

50

40

grCl

70

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

siGr

clGr

30

20

10

grsaSi grsaCl sagrSi sagrCl grsaSi grsaCl grsaSi grsaCl

90

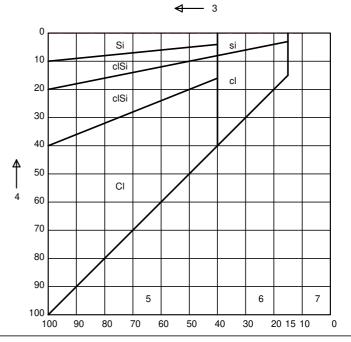
100

0

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	0,069
20,0	0,121
30,0	0,160
40,0	0,198
50,0	0,242
60,0	0,294
70,0	0,361
80,0	0,458
90,0	0,664
100,0	8,000

	100 , 0
1: Kiesanteil (2 mm 65 mm)	\sim
2: Sandanteil (0.063 mm 2 mm)	90 🗸 🗎 10
3: Feinanteil (< 0.063 mm)	
4: Tonanteil	80 \ Sa \ 20
5: Feinkörnige Böden (Schluff und Ton)	
(Schluff und Ton)	70 / \ \ \ \ \ \ \ \ 3
6: Gemischtkörnige Böden	/% \\ \\ \\ \\
(schluffiger oder toniger Kies und Sand)	60 siSa grSa
7: Grobkörnige Böden	clSa /
(Kies und Sand)	grsiSa
, , , , , , , , , , , , , , , , , , , ,	grclSa
2 40 /	$^{\prime}$ $^{\prime}$
· /	aSi III
/ 1	aclSi / III /
	asiCl / IV / sasiGr
	aCl // II // saclGr

clSi


siCl Cl

80

90

100

Kornkennziffer	0 1 9 0 0
DIN 4023-1	mS,fs*,gs',u'
DIN 14688-1	sifgrfgrMSa
Bodengruppe	SU
Korngruppe	>3.15 5.6
Geologische Bezeichnung	
Arbeitsweise	Nasssiebung
DIN EN 12620Tab. 2 - G	
DIN EN 12620Tab. 3 - G	G NR
DIN EN 12620Tab. 4 - G _{TC}	GTC NR
Block- / Steinanteil	mittel
Form der Körnungslinie	
AASHTO M 145-82/ UCSC	A-2-4
d ₁₀ / d ₃₀ / d ₆₀	0,07 0,16 0,29
C _U / C _C	4,28 1,26
d _g / F _g / n	0,38 9,28 36,10
D _S / Median	3,48
k _f -Wert	4,230 * 10 ⁻⁵ [m/s] nach Beyer
D / d / D/d	
I _P / W _L	
Ton	0,00
Schluff	9,09
fein / mittel / grob	0,00 0,00 9,09
Sand	88,54
fein / mittel / grob	31,38 47,47 9,69
Kies	2,37
fein / mittel / grob	2,16 0,19 0,01
Steine / Blöcke	0,00

Bemerkungen:

Prüfungsnr.: RK-006042024s10

Anlage: 4 Blatt 64 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s10

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: im

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 7/24 (GP 7/4)

Entnahmetiefe: 2,2-3,0 m unter GOK

Bodenart: Sand

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

6 7

8

9

10

11

Einwaage Siebanalyse me: 439,00 g Abgeschlämmter Anteil ma:

7,00 g

%-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

Rückstand

[%]

0,00

0,00

0,00

0,00

0,67

1,57

4,48

26,23

85,65

97,31

98,43

98,43 1,57

Durchgang

[%]

100,0

100,0

100,0

100,0

99,3

98,4

95,5

73,8

14,3 2,7

2

2

8,00

Gesamtgewicht der Probe mt:

446,00 g Rückstand Siebdurchmesser [mm] [g] 63<u>,000</u> 0,00 1 2 31,500 0,00 3 16,000 0,00 4 8,000 0,00 5 4,000 3,00

2,000

1,000

0,500

0,250

0,125

0,063

439,00 Schale 98,43 439,00 g Summe aller Siebrückstände: S = Größtkorn [mm]: SV = me - S =0,00 Siebverlust:

7,00

20,00

117,00

382,00

434,00

439,00

SV' = (me - S) / me * 100 =0,00 %

Fraktionsanteil	Prozentanteil
Ton	
Schluff	1,57
Sandkorn	96,86
Feinsand	3,71
Mittelsand	78,91
Grobsand	14,24
Kieskorn	1,57
Feinkies	1,35
Mittelkies	0,20
Grobkies	0,02
Steine	0,00

Bemerkungen:

Prüfungs-Nr.: RK-006042024s10

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

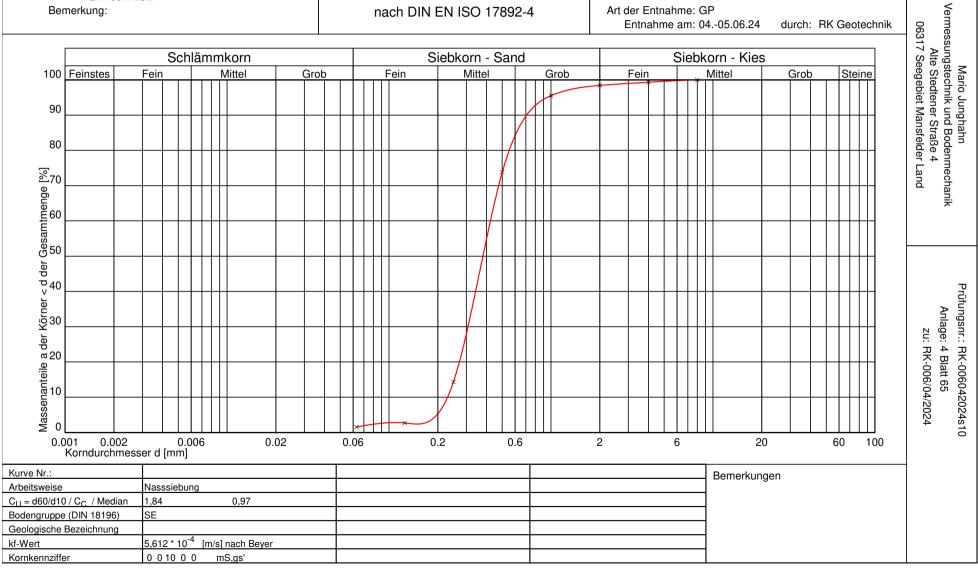
Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung

nach DIN EN ISO 17892-4

Entnahmestelle: BS 7/24 (GP 7/4)

Entnahmetiefe: 2,2-3,0


m unter GOK

Bodenart: Sand

Art der Entnahme: GP

Entnahme am: 04.-05.06.24

durch: RK Geotechnik

Prüfungsnr.: RK-006042024s10 Anlage: 4 Blatt 66 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s10

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 7/24 (GP 7/4)

Entnahmetiefe: 2,2-3,0 m unter GOK

Bodenart: Sand

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

grsaSi

grsaCl

sagrSi

sagrCl

grsaSi

grsaCl

grsaSi

grsaCl

saGr

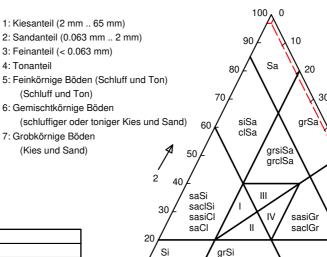
siGr

clGr

30

Gr

10


20

90

100

0

Siebdurch-
messer [mm]
0,230
0,272
0,307
0,342
0,380
0,423
0,475
0,552
0,706
8,000

clSi

siCl Cl

80

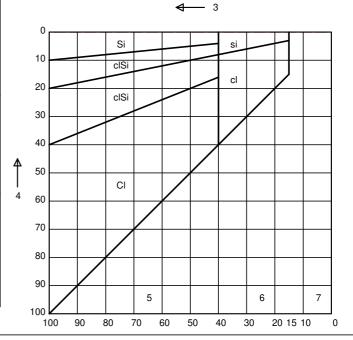
90

100

grclSi

grsiCl

60


50

40

grCl

70

Kornkennziffer	0 0 10 0 0
DIN 4023-1	mS,gs'
DIN 14688-1	fgrfgrsiMSa
Bodengruppe	SE
Korngruppe	>2.0 3.15
Geologische Bezeichnung	
Arbeitsweise	Nasssiebung
DIN EN 12620Tab. 2 - G	
DIN EN 12620Tab. 3 - G	G NR
DIN EN 12620Tab. 4 - G _{TC}	GTC NR
Block- / Steinanteil	mittel
Form der Körnungslinie	steil verlaufend
AASHTO M 145-82/ UCSC	A-3
d ₁₀ / d ₃₀ / d ₆₀	0,23 0,31 0,42
C _U / C _C	1,84 0,97
d _q /F _q /n	0,38 6,84 34,25
D _S / Median	2,56
k _f -Wert	5,612 * 10 ⁻⁴ [m/s] nach Beyer
D / d / D/d	
I _P / W _L	
Ton	0,00
Schluff	1,57
fein / mittel / grob	0,00 0,00 1,57
Sand	96,86
fein / mittel / grob	3,71 78,91 14,24
Kies	1,57
fein / mittel / grob	1,35 0,20 0,02
Steine / Blöcke	0.00

Bemerkungen:

Prüfungsnr.: RK-006042024s11

Anlage: 4 Blatt 67 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s11

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: im

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 7/24 (GP 7/6)

Entnahmetiefe: 4,0-5,0 m unter GOK

Bodenart: Sand

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Größtkorn [mm]:

8,00

Siebanalyse:

485,00 g Einwaage Siebanalyse me: Abgeschlämmter Anteil ma: 12,00 g

97,59 %-Anteil der Siebeinwaage me' = 100 - ma' me':

%-Anteil der Abschlämmung ma' = 100 - me' ma': 2,41

Gesamtgewi	Gesamtgewicht der Probe mt: 497,00 g			
	Siebdurchmesser [mm]	Rückstand [g]	Rückstand [%]	Durchgang [%]
1	63,000	0,00	0,00	100,0
2	31,500	0,00	0,00	100,0
3	16,000	0,00	0,00	100,0
4	8,000	0,00	0,00	100,0
5	4,000	7,00	1,41	98,6
6	2,000	13,00	2,62	97,4
7	1,000	56,00	11,27	88,7
8	0,500	246,00	49,50	50,5
9	0,250	441,00	88,73	11,3
10	0,125	480,00	96,58	3,4
11	0,063	485,00	97,59	2
	Schale	485,00	97,59	2

Summe aller Siebrückstände: 485,00 g S = Siebverlust: SV = me - S =0,00

SV' = (me - S) / me * 100 =0,00

Fraktionsanteil	Prozentanteil
Ton	
Schluff	2,41
Sandkorn	94,97
Feinsand	3,47
Mittelsand	56,60
Grobsand	34,90
Kieskorn	2,62
Feinkies	2,13
Mittelkies	0,45
Grobkies	0,03
Steine	0.00

Bemerkungen:

Prüfungs-Nr.: RK-006042024s11

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

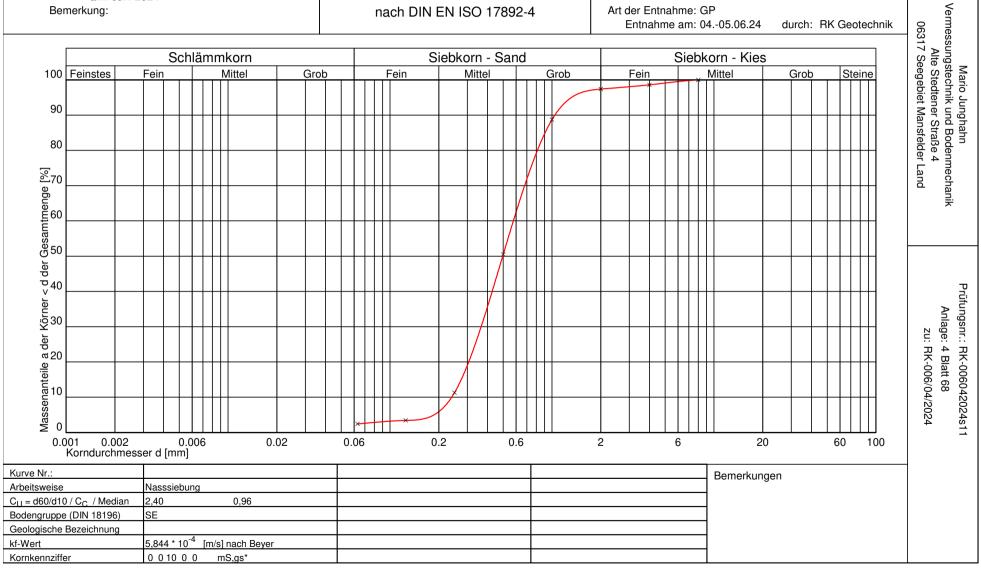
Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung

nach DIN EN ISO 17892-4

Entnahmestelle: BS 7/24 (GP 7/6)

Entnahmetiefe: 4,0-5,0


m unter GOK

Bodenart: Sand

Art der Entnahme: GP

Entnahme am: 04.-05.06.24

durch: RK Geotechnik

Prüfungsnr.: RK-006042024s11 Anlage: 4 Blatt 69 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s11

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 7/24 (GP 7/6)

Entnahmetiefe: 4,0-5,0 m unter GOK

Bodenart: Sand

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

grsaSi

grsaCl

sagrSi

sagrCl

grsaSi

grsaCl

grsaSi

grsaCl

saGr

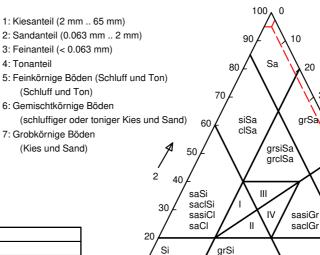
siGr

clGr

30

Gr

10


20

90

100

0

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	0,240
20,0	0,306
30,0	0,365
40,0	0,427
50,0	0,496
60,0	0,577
70,0	0,677
80,0	0,813
90,0	1,041
100,0	8,000

clSi

siCl Cl

80

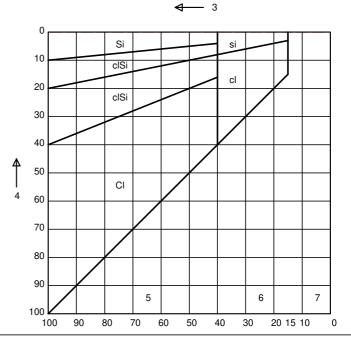
90

100

grclSi

grsiCl

60


50

40

grCl

70

Kornkennziffer	0 0 10 0 0
DIN 4023-1	mS,gs*
DIN 14688-1	fgrfgrsiMSa
Bodengruppe	SE
Korngruppe	>2.0 3.15
Geologische Bezeichnung	
Arbeitsweise	Nasssiebung
DIN EN 12620Tab. 2 - G	
DIN EN 12620Tab. 3 - G	G NR
DIN EN 12620Tab. 4 - G _{TO}	GTC NR
Block- / Steinanteil	mittel
Form der Körnungslinie	steil verlaufend
AASHTO M 145-82/ UCSO	A-1-b
d ₁₀ / d ₃₀ / d ₆₀	0,24 0,37 0,58
C _U / C _C	2,40 0,96
d _q /F _q /n	0,38 7,40 33,11
D _S / Median	2,78
k _f -Wert	5,844 * 10 ⁻⁴ [m/s] nach Beyer
D / d / D/d	
I _P / W _L	
Ton	0,00
Schluff	2,41
fein / mittel / grob	0,00 0,00 2,41
Sand	94,97
fein / mittel / grob	3,47 56,60 34,90
Kies	2,62
fein / mittel / grob	2,13 0,45 0,03
Steine / Blöcke	0,00

Bemerkungen:

Prüfungsnr.: RK-006042024s12

Anlage: 4 Blatt 70 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s12

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 8/24 (GP 8/7)

Entnahmetiefe: 3,5-4,0

m unter GOK

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

Einwaage Siebanalyse me: 586,00 g Abgeschlämmter Anteil ma: 130,00 g %-Anteil der Siebeinwaage me' = 100 - ma' me':

81,84 %-Anteil der Abschlämmung ma' = 100 - me' ma': 18,16

Gesamtgew	<u>richt der Probe</u> mt: 716,0	0 g		
	Siebdurchmesser [mm]	Rückstand [g]	Rückstand [%]	Durchgang [%]
1	63,000	0,00	0,00	100,0
2	31,500	0,00	0,00	100,0
3	16,000	0,00	0,00	100,0
4	8,000	11,00	1,54	98,5
5	4,000	19,00	2,65	97,3
6	2,000	29,00	4,05	95,9
7	1,000	46,00	6,42	93,6
8	0,500	104,00	14,53	85,5
9	0,250	270,00	37,71	62,3
10	0,125	485,00	67,74	32,3
11	0,063	586,00	81,84	18
	Schale	586.00	81,84	18

Summe aller Siebrückstände:

586,00 g S =

0,00

Größtkorn [mm]:

16,00

Siebverlust: SV = me - S =SV' = (me - S) / me * 100 =0,00

Fraktionsanteil	Prozentanteil
Ton	
Schluff	18,16
Sandkorn	77,79
Feinsand	33,93
Mittelsand	36,72
Grobsand	7,14
Kieskorn	4,04
Feinkies	1,99
Mittelkies	2,19
Grobkies	0,00
Steine	0,01

Bemerkungen:

Prüfungs-Nr.: RK-006042024s12

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

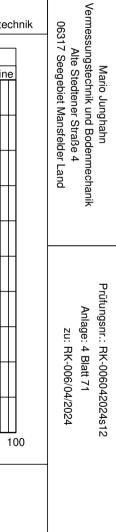
Bemerkung:

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung

nach DIN EN ISO 17892-4

Entnahmestelle: BS 8/24 (GP 8/7)


Entnahmetiefe: 3,5-4,0

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

m unter GOK

Prüfungsnr.: RK-006042024s12 Anlage: 4 Blatt 72 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s12

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 8/24 (GP 8/7)

Entnahmetiefe: 3,5-4,0

Bodenart: Sand, schluffig

grSi

70

grclSi grsiCl grCl

60

50

40

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

siGr

clGr

30

20

Gr

10

100

0

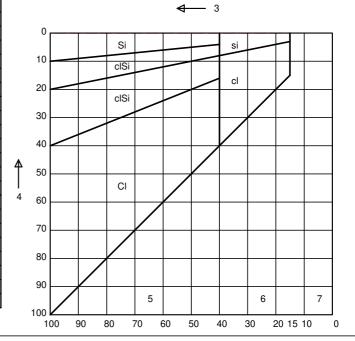
m unter GOK

grsaSi grsaCl sagrSi sagrCl grsaSi grsaCl grsaSi grsaCl

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	
20,0	0,072
30,0	0,116
40,0	0,153
50,0	0,191
60,0	0,237
70,0	0,301
80,0	0,404
90,0	0,654
100,0	16,000

	100 0
1: Kiesanteil (2 mm 65 mm)	/ \
2: Sandanteil (0.063 mm 2 mm)	90 / / \ 10
3: Feinanteil (< 0.063 mm)	(/ 1
4: Tonanteil	$_{80}$ \bigwedge Sa \bigvee_{20}
5: Feinkörnige Böden (Schluff und Ton)	
(Schluff und Ton)	70/ \\ / \:
6: Gemischtkörnige Böden	/ \ \ \
(schluffiger oder toniger Kies und Sand) 6	o⊈ siSa X grSa
7: Grobkörnige Böden	CISa / \
(Kies und Sand)	grsi <mark>S</mark> a
/ 3/	grclSa
2 40/	
saSi	i / / \
30 / sacl	, , , , ,
/ sasi	////
/ saC	l // II \ / saclGr

clSi


siCl Cl

80

90

100

Kornkennziffer	0 2 8 0 0	
DIN 4023-1	mS-fS,gs',u	
DIN 14688-1	simgrfgrcoMSaFSa	
Bodengruppe	SU*	
Korngruppe	0.71 1.25	
Geologische Bezeichnung		
Arbeitsweise	Nasssiebung	
DIN EN 12620Tab. 2 - G		
DIN EN 12620Tab. 3 - G	G NR	
DIN EN 12620Tab. 4 - G _{TC}	GTC NR	
Block- / Steinanteil	mittel	
Form der Körnungslinie	steil verlaufend	
AASHTO M 145-82/ UCSC	A-2-4 SM	
d ₁₀ / d ₃₀ / d ₆₀	0,00 0,12 0,24	
C _U / C _C	0,00 0,00	
d _g / F _g / n	0,19 5,00 0,00	
D _S / Median	0,94	
k _f -Wert	8,365 * 10 ⁻⁶ [m/s] USBR/Biala	as
D / d / D/d		
I _P / W _L		
Ton	0,00	
Schluff	18,16	
fein / mittel / grob	0,00 0,00 18,16	
Sand	77,79	
fein / mittel / grob	33,93 36,72 7,14	
Kies	4,04	
fein / mittel / grob	1,99 2,19 0,00	
Steine / Blöcke	0,01	

Bemerkungen:

Mario Junghahn Vermessungstechnik und Bodenmechanik Alte Stedtener Straße 4 06317 Seegebiet Mansfelder Land

Prüfungsnr.: RK-006042024s13

Anlage: 4 Blatt 73 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s13

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 8/24 (GP 8/9)

Entnahmetiefe: 5,3-6,0

m unter GOK

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

Einwaage Siebanalyse me: 269,00 g Abgeschlämmter Anteil ma:

22,00 g

%-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

92,44 7,56

Gesamtgewicht der Probe mt: 291,00 g

	Siebdurchmesser [mm]	Rückstand [g]	Rückstand [%]	Durchgang [%]
1	63,000	0,00	0,00	100,0
2	31,500	0,00	0,00	100,0
3	16,000	0,00	0,00	100,0
4	8,000	0,00	0,00	100,0
5	4,000	5,00	1,72	98,3
6	2,000	8,00	2,75	97,3
7	1,000	17,00	5,84	94,2
8	0,500	87,00	29,90	70,1
9	0,250	214,00	73,54	26,5
10	0,125	256,00	87,97	12,0
11	0,063	269,00	92,44	8
	Schale	269,00	92,44	8

Summe aller Siebrückstände:

S =

269,00 g

Größtkorn [mm]:

8,00

Siebverlust:

SV = me - S =

0,00

SV' = (me - S) / me * 100 =0,00 %

Fraktionsanteil	Prozentanteil
Ton	
Schluff	7,56
Sandkorn	89,69
Feinsand	10,96
Mittelsand	60,91
Grobsand	17,82
Kieskorn	2,75
Feinkies	2,16
Mittelkies	0,55
Grobkies	0,04
Steine	0,00

Bemerkungen:

© By IDAT-GmbH 1995 - 2020 V 4.43 5877

© By IDAT-GmbH 1995 - 2020 V 4.43 5877

Prüfungs-Nr.: RK-006042024s13

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

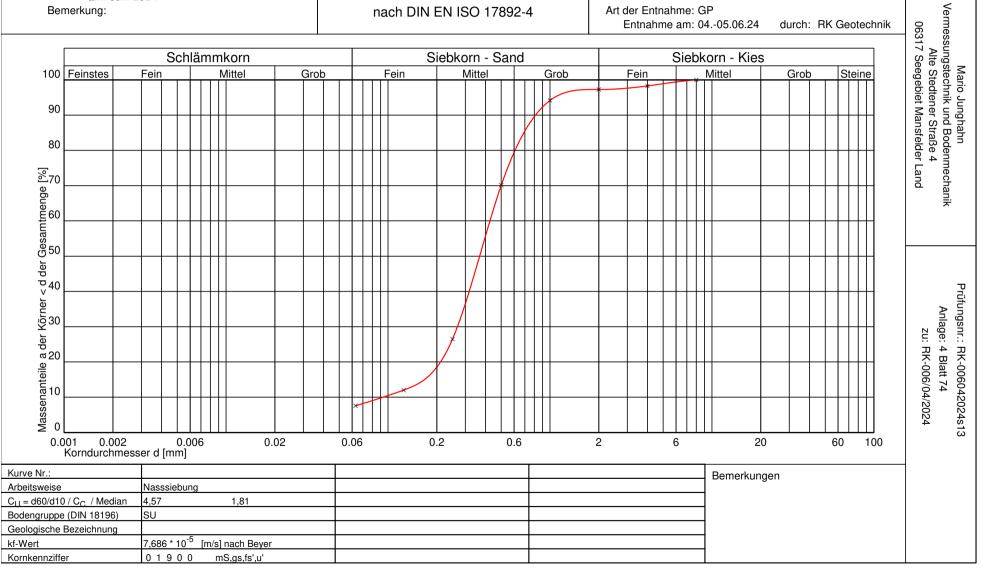
Bemerkung:

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung

nach DIN EN ISO 17892-4

Entnahmestelle: BS 8/24 (GP 8/9)


Entnahmetiefe: 5,3-6,0

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

m unter GOK

Mario Junghahn Vermessungstechnik und Bodenmechanik Alte Stedtener Straße 4 06317 Seegebiet Mansfelder Land

Prüfungsnr.: RK-006042024s13 Anlage: 4 Blatt 75 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s13

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 8/24 (GP 8/9)

Entnahmetiefe: 5,3-6,0

grSi

grclSi

grsiCl

60

50

40

grCl

70

Bodenart: Sand, schluffig

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

m unter GOK

grsaSi

grsaCl

sagrSi

sagrCl

grsaSi

grsaCl

grsaSi

grsaCl

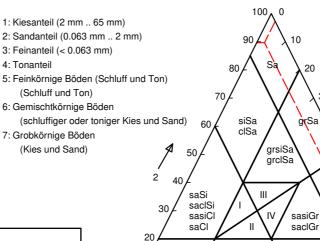
90

100

0

saGr

siGr


clGr

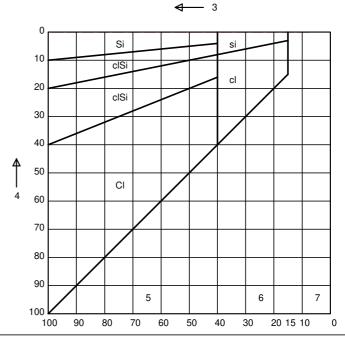
30

20

10

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	0,093
20,0	0,211
30,0	0,268
40,0	0,317
50,0	0,368
60,0	0,426
70,0	0,499
80,0	0,608
90,0	0,813
100,0	8,000

clSi


siCl Cl

80

90

100

Kornkennziffer	0 1 9 0 0
DIN 4023-1	mS,gs,fs',u'
DIN 14688-1	sifgrfgrMSa
Bodengruppe	SU
Korngruppe	>3.15 5.6
Geologische Bezeichnung	
Arbeitsweise	Nasssiebung
DIN EN 12620Tab. 2 - G	
DIN EN 12620Tab. 3 - G	G NR
DIN EN 12620Tab. 4 - G _{TO}	GTC NR
Block- / Steinanteil	mittel
Form der Körnungslinie	
AASHTO M 145-82/ UCSO	A-3
d ₁₀ / d ₃₀ / d ₆₀	0,09 0,27 0,43
C _U / C _C	4,57 1,81
d _g / F _g / n	0,38 9,57 34,82
D _S / Median	3,59
k _f -Wert	7,686 * 10 ⁻⁵ [m/s] nach Beyer
D / d / D/d	
I _P / W _L	
Ton	0,00
Schluff	7,56
fein / mittel / grob	0,00 0,00 7,56
Sand	89,69
fein / mittel / grob	10,96 60,91 17,82
Kies	2,75
fein / mittel / grob	2,16 0,55 0,04
Steine / Blöcke	0,00

Bemerkungen:

By IDAT-GmbH 1995 - 2020 V 4.43 5877

Mario Junghahn Vermessungstechnik und Bodenmechanik Alte Stedtener Straße 4 06317 Seegebiet Mansfelder Land

Prüfungsnr.: RK-006042024s14

Anlage: 4 Blatt 76 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s14

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: im

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 9/24 (GP 9/5)

Entnahmetiefe: 3,2-4,0 m unter GOK

Bodenart: Sand

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

Einwaage Siebanalyse me: 551,00 g

Abgeschlämmter Anteil ma: 8,00 g %-Anteil der Siebeinwaage me' = 100 - ma' me':

%-Anteil der Abschlämmung ma' = 100 - me' ma': 1,43

Größtkorn [mm]:

98,57

8,00

Gesamtgewicht der Probe mt: 559,00 g				
	Siebdurchmesser	Rückstand	Rückstand	Durchgang
	[mm]	[g]	[%]	[%]
1	63,000	0,00	0,00	100,0
2	31,500	0,00	0,00	100,0
3	16,000	0,00	0,00	100,0
4	8,000	0,00	0,00	100,0
5	4,000	7,00	1,25	98,7
6	2,000	15,00	2,68	97,3
7	1,000	56,00	10,02	90,0
8	0,500	263,00	47,05	53,0
9	0,250	506,00	90,52	9,5
10	0,125	548,00	98,03	2,0
11	0,063	551,00	98,57	1
	Schale	551,00	98,57	1

Summe aller Siebrückstände:

Siebverlust:

551,00 g S =

SV = me - S =

0,00

SV' = (me - S) / me * 100 =0,00

Fraktionsanteil	Prozentanteil
Ton	
Schluff	1,43
Sandkorn	95,89
Feinsand	2,26
Mittelsand	61,47
Grobsand	32,15
Kieskorn	2,68
Feinkies	2,30
Mittelkies	0,36
Grobkies	0,03
Steine	0,00

Bemerkungen:

© By IDAT-GmbH 1995 - 2020 V 4.43 5877

© By IDAT-GmbH 1995 - 2020 V 4.43 5877

Prüfungs-Nr.: RK-006042024s14

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

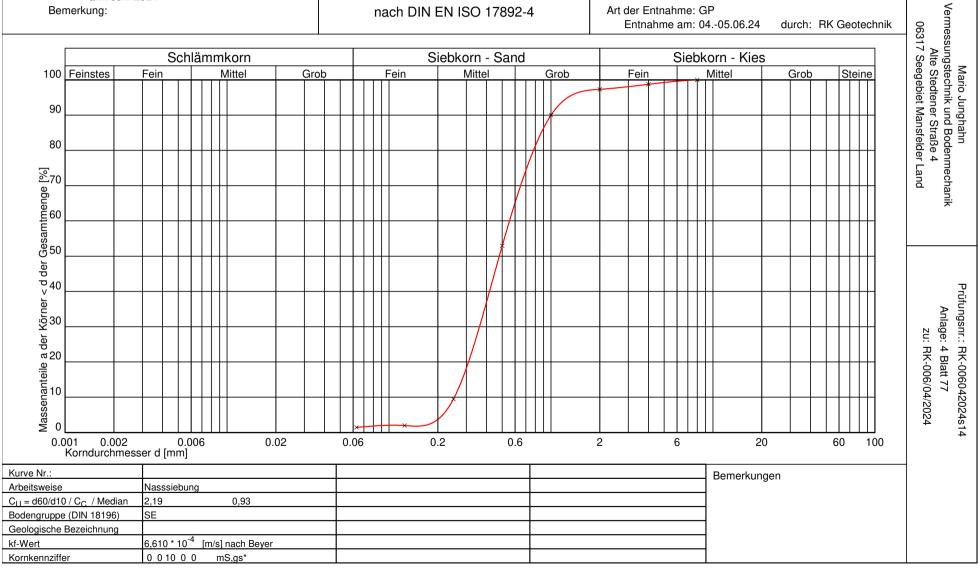
Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung

nach DIN EN ISO 17892-4

Entnahmestelle: BS 9/24 (GP 9/5)

Entnahmetiefe: 3,2-4,0


m unter GOK

Bodenart: Sand

Art der Entnahme: GP

Entnahme am: 04.-05.06.24

durch: RK Geotechnik

Mario Junghahn Vermessungstechnik und Bodenmechanik Alte Stedtener Straße 4 06317 Seegebiet Mansfelder Land

Prüfungsnr.: RK-006042024s14 Anlage: 4 Blatt 78 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s14

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 9/24 (GP 9/5)

Entnahmetiefe: 3,2-4,0 m unter GOK

Bodenart: Sand

grSi grclSi

grsiCl grCl

60

50

40

70

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

grsaSi grsaCl sagrSi sagrCl grsaSi grsaCl grsaSi grsaCl

Gr

10

100

0

siGr

clGr

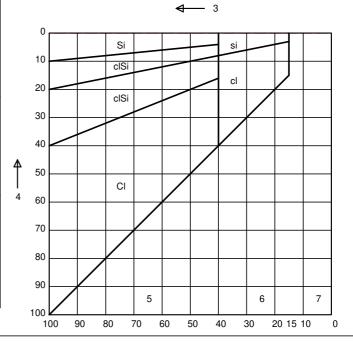
30

20

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	0,253
20,0	0,309
30,0	0,362
40,0	0,417
50,0	0,480
60,0	0,554
70,0	0,649
80,0	0,779
90,0	1,001
100,0	8,000

1: Kiesanteil (2 mm 65 mm)	100 0
	90 🗸 🔌 10
3: Feinanteil (< 0.063 mm)	\ \\
4: Tonanteil 80	∕\ Sa \\ ₂₀
5: Feinkörnige Böden (Schluff und Ton) (Schluff und Ton) 70	
6: Gemischtkörnige Böden (schluffiger oder toniger Kies und Sand) 60 s	iSa grSa
7: Grobkörnige Böden (Kies und Sand)	grsiSa grclSa
2 40	/
saSi	
30/ sacisi sasiCl saCl	IV sasiGr saclGr

clSi


siCl Cl

80

90

100

Kornkennziffer	0 0 10 0 0
DIN 4023-1	mS,gs*
DIN 14688-1	fgrfgrsiMSa
Bodengruppe	SE
Korngruppe	>2.0 3.15
Geologische Bezeichnung	
Arbeitsweise	Nasssiebung
DIN EN 12620Tab. 2 - G	
DIN EN 12620Tab. 3 - G	G NR
DIN EN 12620Tab. 4 - G _{TC}	GTC NR
Block- / Steinanteil	mittel
Form der Körnungslinie	steil verlaufend
AASHTO M 145-82/ UCSC	A-1-b
$d_{10} / d_{30} / d_{60}$	0,25 0,36 0,55
C _U / C _C	2,19 0,93
$d_g / F_g / n$	0,38 7,19 33,20
D _S / Median	2,70
k _f -Wert	6,610 * 10 ⁻⁴ [m/s] nach Beyer
D / d / D/d	
I_P / W_L	
Ton	0,00
Schluff	1,43
fein / mittel / grob	0,00 0,00 1,43
Sand	95,89
fein / mittel / grob	2,26 61,47 32,15
Kies	2,68
fein / mittel / grob	2,30 0,36 0,03
Steine / Blöcke	0,00

Bemerkungen:

© By IDAT-GmbH 1995 - 2020 V 4.43 5877

Mario Junghahn Vermessungstechnik und Bodenmechanik Alte Stedtener Straße 4 06317 Seegebiet Mansfelder Land

Prüfungsnr.: RK-006042024s15

Anlage: 4 Blatt 79 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s15

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: im

am: Juni 2024

Bemerkung:

Entnahmestelle: BS 9/24 (GP 9/7)

Entnahmetiefe: 5,0-6,0 m unter GOK

Bodenart: Sand

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

Siebanalyse:

Einwaage Siebanalyse me: 437,00 g Abgeschlämmter Anteil ma:

10,00 g

%-Anteil der Siebeinwaage me' = 100 - ma' me': 97,76 %-Anteil der Abschlämmung ma' = 100 - me' ma':

2,24

Gesamtgewicht der Probe mt: 447<u>,00</u> g Rückstand Siebdurchmesser Rückstand Durchgang [mm] [g] [%] [%] 63<u>,000</u> 0,00 0,00 100,0 1 2 31,500 0,00 0,00 100,0 3 16,000 0,00 0,00 100,0 4 8,000 0,00 0,00 100,0 5 4,000 4,00 0,89 99,1 2,000 8,00 1,79 98,2 6 7 42,00 9,40 90,6 1,000 8 0,500 223,00 49,89 50,1 9 0,250 408,00 91,28 8,7 434,00 10 0,125 97,09 2,9

Summe aller Siebrückstände:

11

437,00 g S =

0,00

437,00

437,00

97,76

97,76

8,00

2

2

Größtkorn [mm]:

Siebverlust:

SV = me - S =

0,063

Schale

0,00 SV' = (me - S) / me * 100 =%

Fraktionsanteil	Prozentanteil
Ton	
Schluff	2,24
Sandkorn	95,97
Feinsand	1,52
Mittelsand	59,18
Grobsand	35,28
Kieskorn	1,79
Feinkies	1,52
Mittelkies	0,25
Grobkies	0,02
Steine	0.00

Bemerkungen:

© By IDAT-GmbH 1995 - 2020 V 4.43 5877

© By IDAT-GmbH 1995 - 2020 V 4.43 5877

Prüfungs-Nr.: RK-006042024s15

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm

am: Juni 2024

Bemerkung:

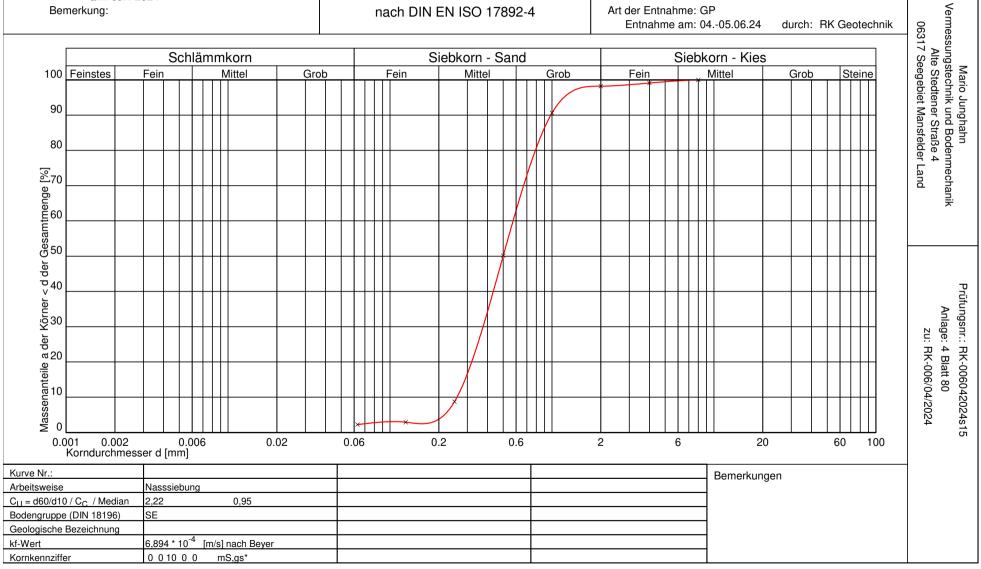
Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung

nach DIN EN ISO 17892-4

Entnahmestelle: BS 9/24 (GP 9/7)

Entnahmetiefe: 5,0-6,0


m unter GOK

Bodenart: Sand

Art der Entnahme: GP

Entnahme am: 04.-05.06.24

durch: RK Geotechnik

Mario Junghahn Vermessungstechnik und Bodenmechanik Alte Stedtener Straße 4 06317 Seegebiet Mansfelder Land

Prüfungsnr.: RK-006042024s15 Anlage: 4 Blatt 81 zu: RK-006/04/2024

Bestimmung der Korngrößenverteilung

Nass-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: RK-006042024s15

Bauvorhaben: Neubau interkommunaler Schulcampus

Schulzendorf

Ausgeführt durch: jm am: Juni 2024

Bemerkung:

Entnahmestelle: BS 9/24 (GP 9/7)

Entnahmetiefe: 5,0-6,0 m unter GOK

Bodenart: Sand

Art der Entnahme: GP

Entnahme am: 04.-05.06.24 durch: RK Geotechnik

grsaSi

grsaCl

sagrSi

sagrCl

grsaSi

grsaCl

grsaSi

grsaCl

saGr

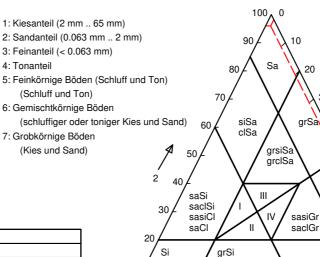
siGr

clGr

30

Gr

10


20

90

100

0

Durchgang	Siebdurch-
[%]	messer [mm]
10,0	0,259
20,0	0,319
30,0	0,375
40,0	0,434
50,0	0,499
60,0	0,575
70,0	0,667
80,0	0,790
90,0	0,983
100,0	8,000

clSi

siCl Cl

80

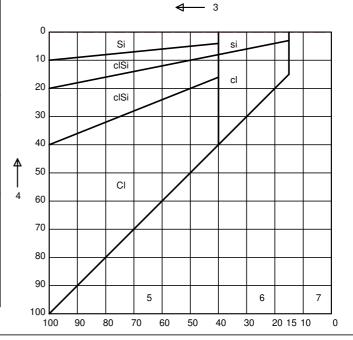
90

100

grclSi

grsiCl

60


50

40

grCl

70

Kornkennziffer	0 0 10 0 0
DIN 4023-1	mS,gs*
DIN 14688-1	sifgrfgrMSa
Bodengruppe	SE
Korngruppe	>2.0 3.15
Geologische Bezeichnung	
Arbeitsweise	Nasssiebung
DIN EN 12620Tab. 2 - G	
DIN EN 12620Tab. 3 - G	G NR
DIN EN 12620Tab. 4 - G _{TC}	GTC NR
Block- / Steinanteil	mittel
Form der Körnungslinie	steil verlaufend
AASHTO M 145-82/ UCSC	A-1-b
d ₁₀ / d ₃₀ / d ₆₀	0,26 0,38 0,57
C _U / C _C	2,22 0,95
d _g / F _g / n	0,38 7,22 33,06
D _S / Median	2,71
k _f -Wert	6,894 * 10 ⁻⁴ [m/s] nach Beyer
D / d / D/d	
I_P / W_L	
Ton	0,00
Schluff	2,24
fein / mittel / grob	0,00 0,00 2,24
Sand	95,97
fein / mittel / grob	1,52 59,18 35,28
Kies	1,79
fein / mittel / grob	1,52 0,25 0,02
Steine / Blöcke	0,00

Bemerkungen:

By IDAT-GmbH 1995 - 2020 V 4.43 5877

Mario Junghahn Prüfungs-Nr.: RK-006042024g1

Vermessungstechnik und Bodenmechanik Anlage: 4 Blatt 82

Alte Stedtener Straße 4

06317 Seegebiet Mansfelder Land

Bestimmung des Glühverlusts

nach DIN EN 17685-1:2023-04

Prüfungsnummer: RK-006042024g1 Entnahmeart: GP

Bauvorhaben: Neubau interkommunaler Entnahmedatum: 04.-05.06.24

Schulcampus Schulzendorf

Entnahme durch: Klein

RK-006/04/2024

zu:

ausgeführt durch: jm

am: 18.06.2024

Probe	BS 6/24 GP 6/1	Sand,schluffig,tonig		nat.Wgehalt
Tiefe	0,0-0,28			8,77%
ungeglühte Probe mit Behälter	58,74	58,87	57,88	
geglühte Probe Behälter	57,74	57,80	56,81	
Behälter	22,58	22,15	22,79	
Massenverlust	1,00	1,07	1,07	
Trockene Probe vor dem Glühen	36,16	36,72	35,09	Mittel
Glühverlust in %	2,77	2,91	3,05	2,91

Probe	BS 7/24 GP 7/1	Sand,schluffig,tonig		nat.Wgehalt
Tiefe	0,0-0,3			6,79%
ungeglühte Probe mit Behälter	62,24	63,55	59,07	
geglühte Probe Behälter	61,21	62,50	58,12	
Behälter	21,67	23,64	20,82	
Massenverlust	1,03	1,05	0,95	
Trockene Probe vor dem Glühen	40,57	39,91	38,25	Mittel
Glühverlust in %	2,54	2,63	2,48	2,55

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 5 Blatt 1

WESSLING GmbH, Moritzburger Weg 67, 01109 Dresden

RK Geotechnik Betratender Ingenieur Inh. R. Klein Herr Ralf Klein Querstraße 4 06120 Halle Saale Geschäftsfeld: Umwelt

Ansprechpartner R. Teufert

Durchwahl: +49 351 8 116 4927

E-Mail: Roswitha. Teufert
@wessling.de

Prüfbericht

Prüfbericht Nr.: CDR24-003201-1 Datum: 19.06.2024

Auftrag Nr.: CDR-00900-24

Steff Schu E

Auftrag: Auftrags-Nr.: RK-006/04/2024

BV: Neubau interkommunaler Schulcampus Schulzendorf

i.A.

Stefan Schulz

Abteilungsleiter Umwelt und Wasser Dipl.-Ing. Technischer Umweltschutz

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 5 Blatt 2

Probeninformation

Probe Nr.	24-074335-01
Bezeichnung	WP 1
Probenart	Grundwasser
Probenahme durch	Auftraggeber
Probengefäß	2x 1l PE
Anzahl Gefäße	2
Eingangsdatum	10.06.2024
Untersuchungsbeginn	10.06.2024
Untersuchungsende	19.06.2024

Physikalisch-chemische Untersuchung

	24-074335-01	Einheit	Bezug	Methode		aS
pH-Wert	7,6		os	DIN EN ISO 10523 (2012-04)	Α	НА
Messtemperatur pH-Wert	12,8	°C	os	DIN EN ISO 10523 (2012-04)	Α	НА
Redoxpotential vs. NHE	66	mV	os	DIN 38404-6 (1984-05)	Α	НА
Säurekapazität, pH 4,3	3,91	mmol/l	os	DIN 38409-7 (2005-12)	Α	НА
Titrationstemperatur (Säure 4,3)	12,8	°C	os	DIN 38409-7 (2005-12)	Α	НА
Säurekapazität, pH 4,3 nach CaCO3-Zugabe	1,72	mmol/l	os	DIN 38409-7 (2005-12)	Α	НА
Titrationstemperatur (Säure 4,3)	18,8	°C	os	DIN 38409-7 (2005-12)	Α	НА
Sättigungs-pH-Wert nach CaCO3-Sättigung	7,8		os	DIN 38409-7 (2005-12)	Α	НА

Elemente

Aus der filtrierten Probe

	24-074335-01	Einheit	Bezug	Methode	aS
Barium (Ba), gelöst	24	μg/l	os	DIN EN ISO 17294-2 (2017-01)	НА
Calcium (Ca), gelöst	100.000	μg/l	os	DIN EN ISO 17294-2 (2017-01)	НА
Magnesium (Mg), gelöst	11.000	μg/l	os	DIN EN ISO 17294-2 (2017-01)	НА
Strontium (Sr), gelöst	240	μg/l	os	DIN EN ISO 17294-2 (2017-01)	НА

Rechnerische Werte

	24-074335-01	Einheit	Bezug	Methode		aS
Calcium (Ca), gelöst	2,5	mol/m³	os	DIN EN ISO 17294-2 (2017-01)	Α	НА
Gesamthärte aus Ca,Mg,Ba,Sr (als CaO)	170	mg/l	os	DIN 38409-6 mod. (1986-01)	Α	НА

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Kationen, Anionen und Nichtmetalle

Anlage 5 Blatt 3

	24-074335-01	074335-01 Einheit E		Methode		aS
Ammonium (NH4)	2,7	mg/l	os	DIN EN ISO 11732 (2005-05)	Α	НА
Chlorid (CI)	12	mg/l	os	DIN EN ISO 10304-1 (2009-07)	Α	НА
Sulfat (SO4)	55	mg/l	os	DIN EN ISO 10304-1 (2009-07)	Α	НА
Sulfid (S), leicht freisetzbar	<0,04	mg/l	os	DIN 38405-27 (1992-07)	A	НА

Rechnerische Werte

	24-074335-01	Einheit	Bezug	Methode		aS
Chlorid (Cl)	0,34	mol/m³	os	DIN EN ISO 10304-1 (2009-07)	Α	НА
Sulfat (SO4)	0,57	mol/m³	os	DIN EN ISO 10304-1 (2009-07)	Α	НА
Härtehydrogencarbonat (als CaO)	110	mg/l	os	DIN 4030-2 (1986-01 / 2008-06)		НА
Nichtcarbonathärte (als CaO)	56	mg/l	os	DIN 4030-2 (1986-01 / 2008-06)		НА
Kohlensäure (CO2), aggressive	<2,2	mg/l	os	DIN 38404-10-M4 (1995-04)		НА

Summenparameter

	24-074335-01	Einheit	Bezug	Methode		aS
Permanganat-Verbrauch	94	mg/l	os	DIN 4030 Teil 2 (2008-06)	Α	НА

Norm Modifikation

DIN 38409-6 mod. (1986-01) Bestimmung des Calcium- und Magnesium-Gehaltes mit der ICP-OES oder ICP-MS

Legende

aS ausführender Standort OS Originalsubstanz HA Hannover

n. n. nicht nachgewiesen (chemisch), nicht nachweisbar
 n. b. nicht bestimmbar (chemisch), nicht analysiert (chemisch), nicht auswertbar

(mikrobiologisch) (mikrobiologisch)

Anlage 5 Blatt 4

Prüfbericht	Probenahme und Analyse
über die Prüfung und Beurteilung von Wasser	nach DIN 4030 Teil 2
auf Betonaggressivität	

Auftraggeber:		Betratender Ingenieur Inh. R. Klein		Auftrags-Nr.:	RK-006/04	4/2024
Bauvorhaben:	Neubau i Schulzer	interkommunaler S ndorf	chulcampus	Labor-Nr.:	24-07433	5-01
Art des Wassers:				Bezeichnung	WP 1	
(z.B. Grund-, Oberflächen-, Sickerv	vasser)			des Wassers:		
Entnahmestelle:				Entnahmetiefe:		m
(z.B. Bohrloch, Schürfgrube, offene	s Gewässer)					
Temperatur des Wassers:		Entnahmezeit:		Entnahmedatum:		
	°C		Uhi	-		
2. Erweiterte Angaben						
Fließrichtung:			Fließgeschwi	ndigkeit:		m/s
Höhe des Wasserspiegels:		m	Hydrostatisch	ner Druck:		m
Beschreibung der Geländev	erhältnisse	am Entnahmeort:				
(z.B. Wohnhäuser, Industrie, Depoi	nie, Halden, A	ckerland, Wald)				

3. Wasseranalyse			4. Grenzwerte schwach	zur Beurteilung nac stark	h DIN 4030 Teil 1 ¹⁾ sehr stark
Parameter	Р	rüfergebnis	angreifend	angreifend	angreifend
Aussehen			-	-	-
Geruch (unveränderte Probe)			-	-	-
Geruch (angesäuerte Probe)			-	-	-
pH-Wert	7,6		6,5 bis 5,5	< 5,5 bis 4,5	< 4,5
KMnO4-Verbrauch	94	mg/l	-	-	-
Härte	170		-	-	-
Härtehydrogencarbonat	110	mg CaO / I	_	-	-
Nichtcarbonathärte	56		-	-	-
Magnesium (Mg ²⁺)	11	mg/l	300 bis 1000	> 1000 bis 3000	> 3000
Ammonium (NH ₄ ⁺)	2,7	mg/l	15 bis 30	> 30 bis 60	> 60
Sulfat (SO ₄ ²⁻)	55	mg/l	200 bis 600	> 600 bis 3000	> 3000
Chlorid (Cl ⁻)	12	mg/l	-	-	-
CO ₂ (kalklösend)	<2,2	mg/l	15 bis 40	> 40 bis 100	> 100
Sulfid (S ²⁻)	<0,04	mg/l	-	-	-

¹⁾ Für die Beurteilung ist der höchste Angriffsgrad maßgebend, auch wenn er nur von einem der Werte erreicht wird. Liegen zwei oder mehr Werte im oberen Viertel eines Bereichs (bei pH im unteren Viertel), so erhöht sich der Angriffsgrad um eine Stufe (ausgenommen Meerwasser und Niederschlagswasser).

5. Beurteilung

Das untersuchte Wasser ist nicht betonangreifend.

Dresden, den 02.07.2024 Ort, Datum

WESSLING GmbH, Moritzburger Weg 67, 01109 Dresden

Anlage 5 Blatt 5

Anlage: Bewertung der Stahlaggressivität von Wässern

nach DIN 50929 Teil 3: Korrosionswahrscheinlichkeit metallischer Werkstoffe bei äußerer Korrosionsbelastung

(Rohrleitungen und Bauteile in Böden und Wässern)

Labornummer:	24-	074335-01	WP 1		
Merkmal und Dimension	Einheit	Analyse	unlegierte Eisen verzinl		verzinkter Stahl
(1) Wasserart			N ₁ =	0	M ₁ = -2
a) fließende Gewässer		Х			
b) stehende Gewässer					
c) Küste von Binnenseen					
d) anaerobe Moor, Meeresküste					
(2) Lage des Objektes			N_2 =	0	M ₂ = 0
a) Unterwasserbereich		X			
b) Wasser-/Luftbereich					
c) Spritzwasserbereich					
(3) c(Cl ⁻) + 2c (SO ₄ ²⁻)		1,48			
mit Chlorid (Cl ⁻)	mol/m³	0,34			
mit Sulfat (SO ₄ ²⁻)	mol/m³	0,57	N ₃ =	-2	M ₃ = 0
(4)Säurekapazität bis pH 4,3	mmol/l	3,91	N ₄ =	3	M ₄ = 1
(5) Ca ²⁺	mol/m³	2,5	N ₅ =	1	M ₅ = 3
(6) pH-Wert	-	7,6	N ₆ =	1	M ₆ = 1
(7) Objekt/Wasser-Potential	V	0,066	N ₇ =	-8	
(Zur Feststellung der Fremdkathoder	1)				

Bewertungszahlsumme W_0 2,33 2.33 Bewertungszahlsumme W₁

Bewertungszahlsumme 3 W_{Γ} Bewertungszahlsumme W_L= 3

Beurteilung:

Die Korrosionswahrscheinlichkeit von unlegierten und niedriglegierten Stählen in Wässern ist im Unterwasserbereich

sehr gering bezüglich Mulden und Lochkorrosion und

sehr gering bezüglich der Flächenkorrosion.

Die Korrosionswahrscheinlichkeit von unlegierten und niedriglegierten Stählen in Wässern ist an der Wasser/Luft-Grenze

sehr gering bezüglich Mulden und Lochkorrosion und

sehr gering bezüglich der Flächenkorrosion.

Die Güte der Deckschichten auf feuerverzinkten Stählen ist sehr gut.

Bemerkung:

Bewertung für fließendes Gewässer

WESSLING GmbH, Moritzburger im Unterwasserbereich Weg 67, 01109 Dresden

Dresden, den 02.07.2024

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 5 Blatt 6

WESSLING GmbH, Moritzburger Weg 67, 01109 Dresden

RK Geotechnik Betratender Ingenieur Inh. R. Klein Herr Ralf Klein Querstraße 4 06120 Halle Saale Geschäftsfeld: Umwelt
Ansprechpartner R. Teufert
Durchwahl: +49 351 8 116 4927
E-Mail: Roswitha. Teufert
@wessling.de

Prüfbericht

Prüfbericht Nr.: CDR24-003202-1 Datum: 19.06.2024

Auftrag Nr.: CDR-00900-24

Steff Scho E

Auftrag: Auftrags-Nr.: RK-006/04/2024

BV: Neubau interkommunaler Schulcampus Schulzendorf

i.A.

Stefan Schulz

Abteilungsleiter Umwelt und Wasser Dipl.-Ing. Technischer Umweltschutz

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 5 Blatt 7

Probeninformation

Probe Nr.	24-074335-02
Bezeichnung	WP2
Probenart	Grundwasser
Probenahme durch	Auftraggeber
Probengefäß	2x 1l PE
Anzahl Gefäße	2
Eingangsdatum	10.06.2024
Untersuchungsbeginn	10.06.2024
Untersuchungsende	19.06.2024

Physikalisch-chemische Untersuchung

	24-074335-02	Einheit	Bezug	Methode		aS
pH-Wert	7,5		os	DIN EN ISO 10523 (2012-04)	Α	НА
Messtemperatur pH-Wert	13,3	°C	os	DIN EN ISO 10523 (2012-04)	Α	НА
Redoxpotential vs. NHE	182	mV	os	DIN 38404-6 (1984-05)	Α	НА
Säurekapazität, pH 4,3	3,84	mmol/l	os	DIN 38409-7 (2005-12)	Α	НА
Titrationstemperatur (Säure 4,3)	13,3	°C	os	DIN 38409-7 (2005-12)	Α	НА
Säurekapazität, pH 4,3 nach CaCO3-Zugabe	1,72	mmol/l	os	DIN 38409-7 (2005-12)	Α	НА
Titrationstemperatur (Säure 4,3)	18,9	°C	os	DIN 38409-7 (2005-12)	Α	НА
Sättigungs-pH-Wert nach CaCO3-Sättigung	7,9		os	DIN 38409-7 (2005-12)	Α	НА

Elemente

Aus der filtrierten Probe

	24-074335-02	Einheit	Bezug	Methode		aS
Barium (Ba), gelöst	13	μg/l	os	DIN EN ISO 17294-2 (2017-01)	Α	НА
Calcium (Ca), gelöst	98.000	μg/l	os	DIN EN ISO 17294-2 (2017-01)	Α	НА
Magnesium (Mg), gelöst	8.500	μg/l	os	DIN EN ISO 17294-2 (2017-01)	Α	НА
Strontium (Sr), gelöst	180	μg/l	os	DIN EN ISO 17294-2 (2017-01)	Α	НА

Rechnerische Werte

	24-074335-02	Einheit	Bezug	Methode	aS
Calcium (Ca), gelöst	2,4	mol/m³	os	DIN EN ISO 17294-2 (2017-01)	НА
Gesamthärte aus Ca,Mg,Ba,Sr (als CaO)	160	mg/l	os	DIN 38409-6 mod. A (1986-01)	НА

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 5 Blatt 8

Kationen, Anionen und Nichtmetalle

	24-074335-02				Methode	
Ammonium (NH4)	<0,05	mg/l	os	DIN EN ISO 11732 (2005-05)	Α	НА
Chlorid (CI)	4,3	mg/l	os	DIN EN ISO 10304-1 (2009-07)	Α	НА
Sulfat (SO4)	36	mg/l	os	DIN EN ISO 10304-1 (2009-07)	Α	НА
Sulfid (S), leicht freisetzbar	<0,04	mg/l	os	DIN 38405-27 (1992-07)	Α	НА

Rechnerische Werte

	24-074335-02	Einheit	Bezug	Methode		aS
Chlorid (Cl)	0,12	mol/m³	os	DIN EN ISO 10304-1 (2009-07)	Α	НА
Sulfat (SO4)	0,38	mol/m³	os	DIN EN ISO 10304-1 (2009-07)	Α	НА
Härtehydrogencarbonat (als CaO)	110	mg/l	os	DIN 4030-2 (1986-01 / 2008-06)		НА
Nichtcarbonathärte (als CaO)	49	mg/l	os	DIN 4030-2 (1986-01 / 2008-06)		НА
Kohlensäure (CO2), aggressive	<2,2	mg/l	OS	DIN 38404-10-M4 (1995-04)		НА

Summenparameter

	24-074335-02	Einheit	Bezug	Methode		aS
Permanganat-Verbrauch	50	mg/l	os	DIN 4030 Teil 2 (2008-06)	Α	НА

Norm Modifikation

DIN 38409-6 mod. (1986-01) Bestimmung des Calcium- und Magnesium-Gehaltes mit der ICP-OES oder ICP-MS

Legende

aS ausführender Standort OS Originalsubstanz HA Hannover

n. n. nicht nachgewiesen (chemisch), nicht nachweisbar
 n. b. nicht bestimmbar (chemisch), nicht analysiert (chemisch), nicht auswertbar

(mikrobiologisch) (mikrobiologisch)

Anlage 5 Blatt 9

Prüfbericht	Probenahme und Analyse
über die Prüfung und Beurteilung von Wasser	nach DIN 4030 Teil 2
auf Betonaggressivität	

Auftraggeber:		Betratender Ingenieur Inh. R. Klein		Auftrags-Nr.:	RK-006/04	/2024
Bauvorhaben:	Neubau in Schulzend	terkommunaler So lorf	chulcampus	Labor-Nr.:	24-074335	-02
Art des Wassers:				Bezeichnung	WP 2	
(z.B. Grund-, Oberflächen-, Sickerv	vasser)			des Wassers:		
Entnahmestelle:				Entnahmetiefe:		m
(z.B. Bohrloch, Schürfgrube, offene	s Gewässer)					
Temperatur des Wassers:		Entnahmezeit:		Entnahmedatum:		
	°C		Uhr			
2. Erweiterte Angaben						
Fließrichtung:			Fließgeschwir	ndigkeit:		m/s
Höhe des Wasserspiegels:		m	Hydrostatisch	er Druck:		m
Beschreibung der Geländev	erhältnisse a	m Entnahmeort:	-			
(z.B. Wohnhäuser, Industrie, Depoi	nie, Halden, Acl	(erland, Wald)				
Ort, Datum			Probenehmer	Auftraggeber	_	

3. Wasse	ranalyse		4. Grenzwerte	zur Beurteilung nac	h DIN 4030 Teil 1 ¹⁾		
			schwach stark sehr sta				
Parameter	Р	rüfergebnis	angreifend	angreifend	angreifend		
Aussehen			-	-	-		
Geruch (unveränderte Probe)			-	-	-		
Geruch (angesäuerte Probe)			-	-	-		
pH-Wert	7,5		6,5 bis 5,5	< 5,5 bis 4,5	< 4,5		
KMnO4-Verbrauch	50	mg/l	-	-	-		
Härte	160		-	-	-		
Härtehydrogencarbonat	110	mg CaO / I	-	-	-		
Nichtcarbonathärte	49		-	-	-		
Magnesium (Mg ²⁺)	8,5	mg/l	300 bis 1000	> 1000 bis 3000	> 3000		
Ammonium (NH ₄ ⁺)	<0,05	mg/l	15 bis 30	> 30 bis 60	> 60		
Sulfat (SO ₄ ²⁻)	36	mg/l	200 bis 600	> 600 bis 3000	> 3000		
Chlorid (Cl ⁻)	4,3	mg/l	-	-	-		
CO ₂ (kalklösend)	<2,2	mg/l	15 bis 40	> 40 bis 100	> 100		
Sulfid (S ²⁻)	<0,04	mg/l	-	-	-		

¹⁾ Für die Beurteilung ist der höchste Angriffsgrad maßgebend, auch wenn er nur von einem der Werte erreicht wird. Liegen zwei oder mehr Werte im oberen Viertel eines Bereichs (bei pH im unteren Viertel), so erhöht sich der Angriffsgrad um eine Stufe (ausgenommen Meerwasser und Niederschlagswasser).

5. Beurteilung

Das untersuchte Wasser ist nicht betonangreifend.

Dresden, den 02.07.2024 Ort, Datum

WESSLING GmbH, Moritzburger Weg 67, 01109 Dresden

Anlage 5 Blatt 10

Anlage: Bewertung der Stahlaggressivität von Wässern

nach DIN 50929 Teil 3: Korrosionswahrscheinlichkeit metallischer Werkstoffe bei äußerer Korrosionsbelastung

(Rohrleitungen und Bauteile in Böden und Wässern)

Labornummer:	24-	24-074335-02 WP 2			
Merkmal und Dimension	Einheit	Analyse	unlegier	te Eisen	verzinkter Stahl
(1) Wasserart			N ₁ =	0	M ₁ = -2
a) fließende Gewässer	•	Х			
b) stehende Gewässer					
c) Küste von Binnenseen					
d) anaerobe Moor, Meeresküste					
(2) Lage des Objektes			N ₂ =	0	M ₂ = 0
a) Unterwasserbereich		Х			
b) Wasser-/Luftbereich					
c) Spritzwasserbereich					
(3) c(Cl ⁻) + 2c (SO ₄ ²⁻)		0,88			
mit Chlorid (Cl ⁻)	mol/m³	0,12			
mit Sulfat (SO ₄ ²⁻)	mol/m³	0,38	N ₃ =	0	M ₃ = 0
(4)Säurekapazität bis pH 4,3	mmol/l	3,84	N ₄ =	3	M ₄ = 1
(5) Ca ²⁺	mol/m³	2,4	N ₅ =	1	M ₅ = 3
(6) pH-Wert	-	7,5	N ₆ =	0	M ₆ = 1
(7) Objekt/Wasser-Potential	V	0,182	N ₇ =	-8	
(Zur Feststellung der Fremdkathoder	1)				

Bewertungszahlsumme	W_0	4,00			
Bewertungszahlsumme	W_1	4,00			
Bewertungszahlsumme	W_{D}	3	Bewertungszahlsumme W _L =	3	

Beurteilung:

Die Korrosionswahrscheinlichkeit von unlegierten und niedriglegierten Stählen in Wässern ist im Unterwasserbereich

sehr gering bezüglich Mulden und Lochkorrosion und

sehr gering bezüglich der Flächenkorrosion.

Die Korrosionswahrscheinlichkeit von unlegierten und niedriglegierten Stählen in Wässern ist an der Wasser/Luft-Grenze

sehr gering bezüglich Mulden und Lochkorrosion und

sehr gering bezüglich der Flächenkorrosion.

Die Güte der Deckschichten auf feuerverzinkten Stählen ist sehr gut.

Bemerkung:

Bewertung für fließendes Gewässer WESSLING GmbH, Moritzburger

im Unterwasserbereich Weg 67, 01109 Dresden

Dresden, den 02.07.2024

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden

www.wessling.de

Anlage 5 Blatt 11

WESSLING GmbH, Moritzburger Weg 67, 01109 Dresden

RK Geotechnik Betratender Ingenieur Inh. R. Klein Herr Ralf Klein Querstraße 4 06120 Halle Saale Geschäftsfeld: Umwelt
Ansprechpartner R. Teufert
Durchwahl: +49 351 8 116 4927
E-Mail: Roswitha. Teufert
@wessling.de

Prüfbericht

Prüfbericht Nr.: CDR24-003104-1 Datum: 17.06.2024

Auftrag Nr.: CDR-00900-24

Steff Schu {

Auftrag: Auftrags-Nr.: RK-006/04/2024

BV: Neubau interkommunaler Schulcampus Schulzendorf

i.A.

Stefan Schulz

Abteilungsleiter Umwelt und Wasser Dipl.-Ing. Technischer Umweltschutz

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden

www.wessling.de

Anlage 5 Blatt 12

Probeninformation

Probe Nr.	24-074337-01
Bezeichnung	GP 4/3
Probenart	Boden
Probenahme durch	Auftraggeber
Probengefäß	PE-Dose
Anzahl Gefäße	1
Eingangsdatum	10.06.2024
Untersuchungsbeginn	10.06.2024
Untersuchungsende	17.06.2024

Probenvorbereitung gem. DIN 4030-2

	24-074337-01	Einheit	Bezug	Methode	aS
Lufttrocknung (40°C)	12.06.2024			DIN 19747 (2009-07)	AL
Mahlen < 90 μm	12.06.2024			DIN 19747 (2009-07)	AL

Kriterien gem. DIN 4030-2

	24-074337-01	Einheit	Bezug	Methode	a
Säuregrad nach Baumann-Gully	188	ml/kg	L-TS <2	DIN 4030-2 (2008-06)	А
Sulfat, heiß HCl-löslich	36	mg/kg	L-TS	Berechnung aus S gem. DIN ISO 22036 mod. (2009-06)	А
Chlorid (CI)	<25	mg/kg	L-TS	Berechnung aus Cl gem. DIN EN ISO 10304-1 mod. (2009-07)	А

Kriterium gem. DIN 4030-2, DIN 50929-3

	24-074337-01	Einheit	Bezug	Methode	aS
Sulfid (S)	3,2	mg/kg	L-TS	DIN 4030-2 mod. (2008-06)	AL

Kriterien gem. DIN 50929-3

	24-074337-01	Einheit	Bezug	Methode	aS
Abschlämmbare Bestandteile	26	Gew%	TS <5	DIN 50929-3 (2018-03)	*
Wassergehalt (105°C)	10,8	Gew%	OS <5	DIN EN 15934 (2012-11) A	AL
pH-Wert (50 %-ige Aufschlämmung)	8,9		OS <5	DIN EN 15933 mod. (2012-11)	AL
Säurekapazität, pH 4,3, gelöst	3,0	mmol/kg	TS <5	Berechnung aus SK4,3 gem. DIN 38409-7 (2005-12)	AL
Basekapazität, pH 7,0	n. a.	mmol/kg	TS <5	DVGW GW 9 (2011-09) Anhang B, Modul 5	AL
Sulfat, HCI-löslich	0,6	mmol/kg	TS <5	Berechnung aus S gem. DIN ISO 22036 mod. (2009-06)	AL
Neutralsalze (Cl + 2*SO4), gelöst incl.½BG	0,2	mmol/kg	TS <5	Berechnung aus Messung gem. DIN EN ISO 10304-1 mod. (2009-07)	AL

Prüfberichte dürfen ohne Genehmigung der WESSLING GmbH nicht auszugsweise vervielfältigt werden. Messergebnisse beziehen sich ausschließlich auf die vorliegenden Prüfobjekte.

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 5 Blatt 13

24-074337-01

Kommentare der Ergebnisse:

Bk 7,0 (F min) Potentiometrie 50929-3 - R, Volumen Natriumhydroxid (NaOH): Der pH-Wert ist >7,0.

Norm DIN ISO	22036 mod. (2009-06)	Modifika	ition					
DIN 4030	0-2 mod. (2008-06)		Aufschluss: Salzsäure/Zinnchlorid-Gemisch (18%HCl, 1% Sn(II)Cl) + Zinkpulver &					
DIN EN IS	SO 10304-1 mod. (2009-07)		anschließende elektrochemische Bestimmung gem. DIN 38405-27 (D27) (2017-10) Bestimmung aus 25:1 Eluat nach DIN 4030-2:2008-06					
DIN EN 1	5933 mod. (2012-11)	Bestimm	ung in 10:1 Aufschlämmung aus < 5	mm Frank	tion der Originalsubstanz			
Legend	е							
aS	ausführender Standort	L-TS <2	Lufttrockensubstanz der <2mm Fraktion	L-TS	Luftrockensubstanz			
TS <5	Trockensubstanz der <5mm Fraktion	OS <5	OS <5	AL	Altenberge			
*	Kooperationspartner	n. n.	nicht nachgewiesen (chemisch), nicht nachweisbar (mikrobiologisch)	n. b.	nicht bestimmbar			
n.a.	nicht analysiert (chemisch), nicht auswertbar (mikrobiologisch)							

Anhang C

Anlage 5 Blatt 14

Prüfungen und Beurteilung von Böden Prüfbericht

DIN 4030-2:2008-06

	ii alia bealtei	iang von	Dogon			
Prüfbericht				Probenahme und Bodenanalyse		
ber die Pr fung und Beurteilung on betonangreifendem Boden				nach DIN 4030 Teil 2		
1. Allgemeine An					·	
Auftraggeber:	RK Geotechnik				Auftrags-Nr.:	RK-006/04/2024
Bau orhaben:	Auftrags-Nr.: RK				Probe-Nr.:	
	B : Neubau inte	rkommunaler	· Schulcamp	ous	24-074337-01	
Art des Bodens:					Bezeichnung des	Bodens:
	Sand, schluffig				Sand, schluffig	
Entnahmestellen:	OD 4/0				Entnahmetiefe:	1,0 – 2,0 m
Entnahmezeit:	GP 4/3				Entnahmemenge: Entnahmedatum:	
2. Erweiterte Angabe	an .				Enthanmedatum.	04.00.2024
Beschreibung der Gel Ackerfläche		ım Entnahme	ort:			
Ort, Datum:	Schulzendorf, 04	1.06.2024			Probennehmer:	RK Geotechnik
Probeneingang			Grenzwerte zur Beurteilung nach DIN 4030 Teil 1			
Bestan	idteil	Pr fer	gebnis	schv	wach angreifend	stark angreifend
Säuregrad nach Ba	umann-Gully	188	ml/kg		200	-
Sulfat (SO ₄ ²⁻)		36	mg/kg	2	000 bis 5000	5000
Sulfid (S ²⁻)		3,2	mg/kg		- a)	-
Chlorid		<25	mg/kg		-	-
^{a)} Bei Sulfidgehalten on 100 mg S ² -/kg Boden ist eine gesonderte Beurteilung durch einen Fachmann erforderlich.						
3. Beurteilung						
Der Boden gilt als	nicht	betonang	reifend.			
Dresden Ort	17.06.2024 Datum	R. Teufert Sachbeart			WESSLING Gmb 67, 01109 Dresder	, Moritzburger Weg n
<u> </u>	Datam	Jaoribeatt	JOILOI			

Anlage: Bewertung der Stahlaggressivität von Boden

Anlage 5 Blatt 15

nach **DIN 50929 Teil 3**: Korrosionswahrscheinlichkeit metallischer Werkstoffe bei äu erer Korrosionsbelastung

(Rohrleitungen und Bauteile in B den und Wässern)

Auswertung für Probennummer:

24-074337-01

Auswertung für i Tobermunner.	2 1 -01 1 331-01			
Merkmal und Messgr e	Einheit	Analyse	Bewertu	ngszahl
(1) Abschlämmbare Bestandteile (a)	Ma%	26	1=	2
(nicht f r Torf, Moor, M II,Schlacke)				
(3) Wassergehalt	Ma%	10,8	3=	0
(4) pH-Wert		8,9	4=	0
(5) Pufferkapazitäten				
Säurekapazität bis p 4,3	mmol/kg	3	₅ =	0
Basekapazität bis p 7,0	mmol/kg	n. a.	₆ =	0
(6) Sulfid (S ² -)	mg/kg	3,2	7=	0
(7) Neutralsalze (wässriger Auszug)	mmol/kg			
$c(Cl^{-})$ $2c(SO_4^{2-})$		0,2	9=	0
mit Chlorid (Cl ⁻) im ₂ O-Extr.	mmol/kg			
mit Sulfat (SO ₄ ²⁻) im ₂ O-Extr.	mmol/kg			
(8) Sulfat (SO ₄ ²⁻ im salzsauren Auszug)	mmol/kg	0,6	8=	0

Eingabe der Z-Werte aus vor-Ort- Betrachtungen/Messungen	Bewert	ungszahl
(2) spezifischer Bodenwiderstand	2=	0
(9) Lage des Objektes zum Grundwasser	₁₀ =	0
(10) Bodenhomogenität, horizontal	11=	0
(11) Bodenhomogenität, vertikal	12=	0
(12) Bodenhomogenität, Bettung	13=	0
(13) Bodenhomogenität, unterschiedliche pH-Werte	₁₄ =	0
(14) Anwesenheit von Fremdkathoden	₁₅ =	0

Bewertungszahlsumme	B ₀ =	2
Bewertungszahlsumme	B ₁ =	2

Einschätzung/	Beurteilung:		
Der Boden ist in di	e Bodenklasse	I a einzuo	ordnen, die Korrosionsbelastung ist
sehr niedrig		$(B_0 = 2)$)
Die Korrosionswah	ırscheinlichkeit bei fr	eier Korrosion on unleg	gierten und
niedriglegierten Eis		sehr gering	bez glich der Mulden- und
Lochkorrosion und	I	sehr gering	bez glich der Flächenkorrosion.
		(B ₁ = 2)
Dresden Ort	17.06.2024 Datum	R. Teufert Sachbearbeiter	WESSLING Gmb , Moritzburger Weg 67, 01109 Dresden

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 6 Blatt 1

RK Geotechnik Betratender Ingenieur Inh. R. Klein Herr Ralf Klein

WESSLING GmbH, Moritzburger Weg 67, 01109 Dresden

Inh. R. Klein Herr Ralf Klein Querstraße 4 06120 Halle Saale Geschäftsfeld: Umwelt

Ansprechpartner R. Teufert

Durchwahl: +49 351 8 116 4927

F-Mail: Roswitha Teufert

@wessling.de

Prüfbericht

Prüfbericht Nr.: CDR24-003256-1 Datum: 21.06.2024

Auftrag Nr.: CDR-00900-24

Steff Schu {

Auftrag: Auftrags-Nr.: RK-006/04/2024

BV: Neubau interkommunaler Schulcampus Schulzendorf

i.A.

Stefan Schulz

Abteilungsleiter Umwelt und Wasser Dipl.-Ing. Technischer Umweltschutz

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 6 Blatt 2

Probeninformation

Probe Nr.	24-074341-01
Bezeichnung	MP1
Probenart	Oberboden
Probenahme durch	Auftraggeber
Probengefäß	5l Eimer
Anzahl Gefäße	1
Eingangsdatum	10.06.2024
Untersuchungsbeginn	10.06.2024
Untersuchungsende	21.06.2024

Auswahl der Verfahren

	24-074341-01	MU	Einheit	Bezug	Methode	aS
Analytik gemäß	Bundesbodenschutz- verordnung	-/-				AL

Probenvorbereitungsprotokoll nach DIN 19747

	24-074341-01	MU	Einheit	Bezug	Methode		aS
Sortierung	nein	-/-			DIN 19747 (2009-07)	Α	МÜ
Grobzerkleinerung	nein	-/-			DIN 19747 (2009-07)	Α	МÜ
Siebung	ja	-/-			DIN 19747 (2009-07)	Α	МÜ
Homogenisierung / Teilung	fraktioniertes Teilen	-/-			DIN 19747 (2009-07)	Α	МÜ
Anzahl der Prüfproben	2	-/-			DIN 19747 (2009-07)	Α	МÜ
Gefriertrocknung	nein	-/-			DIN 19747 (2009-07)	Α	МÜ
Lufttrocknung (40°C)	ja	-/-			DIN 19747 (2009-07)	Α	МÜ
Trocknung (105°C)	ja	-/-			DIN 19747 (2009-07)	Α	МÜ
Überkornzerkleinerung	nein	-/-			DIN 19747 (2009-07)	Α	МÜ
Bruttogewicht Rückstellprobe	2500	-/-	g	os	DIN 19747 (2009-07)	Α	МÜ
Lufttrocknung (40°C) vor Zerkleinerung	ja	-/-			DIN 19747 (2009-07)	Α	МÜ
Feinzerkleinerung	ja	-/-			DIN 19747 (2009-07)	Α	МÜ
Lufttrocknung (40°C) vor Siebung	ja	-/-			DIN 19747 (2009-07)	Α	МÜ
Fraktion < 2mm	87	-/-	Gew%	TS	DIN 19747 (2009-07)	Α	МÜ
Fraktion > 2mm	13	-/-	Gew%	TS	DIN 19747 (2009-07)	Α	МÜ

Physikalisch-chemische Untersuchung

	24-074341-01	MU	Einheit	Bezug	Methode		aS
Trockensubstanz	94,0	±4,7	Gew%	OS <2	DIN EN 14346 Verf. A (2007-03)	Α	ΜÜ
pH-Wert (CaCl2)	6,3	±0,1		TS	DIN EN 15933 (2012-11)	А	ΜÜ

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 6 Blatt 3

Extrakt

	24-074341-01	ми	Einheit	Bezug	Methode		aS
Königswasser-Extrakt	13.06.2024	-/-		L-TS <2	DIN EN 13657-Verf. 1 (2003-01)	Α	AL

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 6 Blatt 4

Aus der Teilfraktion <2mm bezogen auf Trockenmasse

	24-074341-01	MU	Einheit	Bezug	Methode	aS	3
TOC	0,85	± 0,13	Gew%	TS <2	DIN EN 15936 (2012-11)	OF	Р

Elemente

	24-074341-01	MU	Einheit	Bezug	Methode		aS
Arsen (As)	<3	-/-	mg/kg	TS <2	DIN EN 16171 (2017-01)	Α	AL
Blei (Pb)	14	±4	mg/kg	TS <2	DIN EN 16171 (2017-01)	Α	AL
Cadmium (Cd)	<0,1	-/-	mg/kg	TS <2	DIN EN 16171 (2017-01)	Α	AL
Chrom (Cr)	6,5	± 1,9	mg/kg	TS <2	DIN EN 16171 (2017-01)	Α	AL
Kupfer (Cu)	5,7	± 1,7	mg/kg	TS <2	DIN EN 16171 (2017-01)	Α	AL
Nickel (Ni)	<5	-/-	mg/kg	TS <2	DIN EN 16171 (2017-01)	Α	AL
Thallium (TI)	<0,1	-/-	mg/kg	TS <2	DIN EN 16171 (2017-01)	Α	AL
Zink (Zn)	24	±7	mg/kg	TS <2	DIN EN 16171 (2017-01)	Α	AL
Quecksilber (Hg)	<0,1	-/-	mg/kg	TS <2	DIN EN ISO 17294-2 (2017-01)	А	AL

Polycyclische aromatische Kohlenwasserstoffe (PAK)

	24-074341-01	MU	Einheit	Bezug	Methode		aS
Naphthalin	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Acenaphthylen	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Acenaphthen	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Fluoren	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Phenanthren	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Anthracen	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Fluoranthen	0,04	± 0,02	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Pyren	0,04	± 0,02	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Benzo(a)anthracen	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Chrysen	0,02	± 0,01	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Benzo(b)fluoranthen	0,04	± 0,02	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Benzo(k)fluoranthen	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Benzo(a)pyren	0,03	± 0,01	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Dibenz(a,h)anthracen	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Benzo(ghi)perylen	0,03	± 0,01	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Indeno(1,2,3-cd)pyren	0,02	± 0,01	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Summe quantifizierter PAK16	0,22	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 6 Blatt 5

Polychlorierte Biphenyle (PCB)

	24-074341-01	MU	Einheit	Bezug	Methode		aS
PCB Nr. 28	<0,011	-/-	mg/kg	TS <2	DIN EN 16167 (2019-06)	Α	AL
PCB Nr. 52	<0,011	-/-	mg/kg	TS <2	DIN EN 16167 (2019-06)	Α	AL
PCB Nr. 101	<0,011	-/-	mg/kg	TS <2	DIN EN 16167 (2019-06)	Α	AL
PCB Nr. 138	<0,011	-/-	mg/kg	TS <2	DIN EN 16167 (2019-06)	Α	AL
PCB Nr. 153	<0,011	-/-	mg/kg	TS <2	DIN EN 16167 (2019-06)	Α	AL
PCB Nr. 180	<0,011	-/-	mg/kg	TS <2	DIN EN 16167 (2019-06)	Α	AL
PCB Nr. 118	<0,011	-/-	mg/kg	TS <2	DIN EN 16167 (2019-06)	Α	AL
Summe quantifizierter PCB7	n.b.	-/-	mg/kg	TS <2	DIN EN 16167 (2019-06)	Α	AL
Summe quantifizierter PCB6	n. b.	-/-	mg/kg	TS <2	DIN EN 16167 (2019-06)	Α	AL

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 6 Blatt 6

Probeninformation

Probe Nr.	24-074341-02
Bezeichnung	MP 2
Probenart	Oberboden
Probenahme durch	Auftraggeber
Probengefäß	5l Eimer
Anzahl Gefäße	1
Eingangsdatum	10.06.2024
Untersuchungsbeginn	10.06.2024
Untersuchungsende	21.06.2024

Auswahl der Verfahren

	24-074341-02	MU	Einheit	Bezug	Methode	aS
Analytik gemäß	Bundesbodenschutz- verordnung	-/-				AL

Probenvorbereitungsprotokoll nach DIN 19747

	24-074341-02	MU	Einheit	Bezug	Methode		aS
Sortierung	nein	-/-			DIN 19747 (2009-07)	Α	МÜ
Grobzerkleinerung	nein	-/-			DIN 19747 (2009-07)	Α	МÜ
Siebung	ja	-/-			DIN 19747 (2009-07)	Α	МÜ
Homogenisierung / Teilung	fraktioniertes Teilen	-/-			DIN 19747 (2009-07)	Α	МÜ
Anzahl der Prüfproben	2	-/-			DIN 19747 (2009-07)	Α	МÜ
Gefriertrocknung	nein	-/-			DIN 19747 (2009-07)	Α	МÜ
Lufttrocknung (40°C)	ja	-/-			DIN 19747 (2009-07)	Α	МÜ
Trocknung (105°C)	ja	-/-			DIN 19747 (2009-07)	Α	МÜ
Überkornzerkleinerung	nein	-/-			DIN 19747 (2009-07)	Α	МÜ
Bruttogewicht Rückstellprobe	2500	-/-	g	os	DIN 19747 (2009-07)	Α	МÜ
Lufttrocknung (40°C) vor Zerkleinerung	ja	-/-			DIN 19747 (2009-07)	Α	МÜ
Feinzerkleinerung	ja	-/-			DIN 19747 (2009-07)	Α	МÜ
Lufttrocknung (40°C) vor Siebung	ja	-/-			DIN 19747 (2009-07)	Α	МÜ
Fraktion < 2mm	69	-/-	Gew%	TS	DIN 19747 (2009-07)	Α	МÜ
Fraktion > 2mm	31	-/-	Gew%	TS	DIN 19747 (2009-07)	Α	МÜ

Physikalisch-chemische Untersuchung

	24-074341-02	MU	Einheit	Bezug	Methode		aS
Trockensubstanz	94,2	±4,7	Gew%	OS <2	DIN EN 14346 Verf. A (2007-03)	A I	ΜÜ
pH-Wert (CaCl2)	5,9	± 0,1		TS	DIN EN 15933 (2012-11)	A I	МÜ

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 6 Blatt 7

Extrakt

	24-074341-02	MU	Einheit	Bezug	Methode		aS
Königswasser-Extrakt	13.06.2024	-/-		L-TS <2	DIN EN 13657-Verf. 1 (2003-01)	Α	AL

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Aus der Teilfraktion <2mm bezogen auf Trockenmasse

Anlage 6 Blatt 8

	24-074341-02	MU	Einheit	Bezug	Methode	г	aS
TOC	0,83	± 0,12	Gew%	TS <2	DIN EN 15936 (2012-11)	A C	OP

Elemente

	24-074341-02	ми	Einheit	Bezug	Methode		aS
Arsen (As)	<3	-/-	mg/kg	TS <2	DIN EN 16171 (2017-01)	Α	AL
Blei (Pb)	15	±4	mg/kg	TS <2	DIN EN 16171 (2017-01)	А	AL
Cadmium (Cd)	0,12	± 0,035	mg/kg	TS <2	DIN EN 16171 (2017-01)	А	AL
Chrom (Cr)	7,2	± 2,2	mg/kg	TS <2	DIN EN 16171 (2017-01)	А	AL
Kupfer (Cu)	6,7	± 2,0	mg/kg	TS <2	DIN EN 16171 (2017-01)	А	AL
Nickel (Ni)	<5	-/-	mg/kg	TS <2	DIN EN 16171 (2017-01)	А	AL
Thallium (TI)	<0,1	-/-	mg/kg	TS <2	DIN EN 16171 (2017-01)	А	AL
Zink (Zn)	25	±7	mg/kg	TS <2	DIN EN 16171 (2017-01)	Α	AL
Quecksilber (Hg)	<0,1	-/-	mg/kg	TS <2	DIN EN ISO 17294-2 (2017-01)	Α	AL

Polycyclische aromatische Kohlenwasserstoffe (PAK)

	24-074341-02	MU	Einheit	Bezug	Methode		aS
Naphthalin	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Acenaphthylen	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Acenaphthen	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Fluoren	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Phenanthren	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Anthracen	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Fluoranthen	0,03	± 0,02	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Pyren	0,03	± 0,01	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Benzo(a)anthracen	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Chrysen	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Benzo(b)fluoranthen	0,03	± 0,02	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Benzo(k)fluoranthen	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Benzo(a)pyren	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Dibenz(a,h)anthracen	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Benzo(ghi)perylen	0,02	± 0,01	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Indeno(1,2,3-cd)pyren	<0,02	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL
Summe quantifizierter PAK16	0,12	-/-	mg/kg	TS <2	DIN ISO 18287 (2006-05)	Α	AL

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 6 Blatt 9

Polychlorierte Biphenyle (PCB)

	24-074341-02	MU	Einheit	Bezug	Methode		aS
PCB Nr. 28	<0,011	-/-	mg/kg	TS <2	DIN EN 16167 (2019-06)	Α	AL
PCB Nr. 52	<0,011	-/-	mg/kg	TS <2	DIN EN 16167 (2019-06)	А	AL
PCB Nr. 101	<0,011	-/-	mg/kg	TS <2	DIN EN 16167 (2019-06)	Α	AL
PCB Nr. 138	<0,011	-/-	mg/kg	TS <2	DIN EN 16167 (2019-06)	А	AL
PCB Nr. 153	<0,011	-/-	mg/kg	TS <2	DIN EN 16167 (2019-06)	А	AL
PCB Nr. 180	<0,011	-/-	mg/kg	TS <2	DIN EN 16167 (2019-06)	А	AL
PCB Nr. 118	<0,011	-/-	mg/kg	TS <2	DIN EN 16167 (2019-06)	А	AL
Summe quantifizierter PCB7	n. b.	-/-	mg/kg	TS <2	DIN EN 16167 (2019-06)	А	AL
Summe quantifizierter PCB6	n. b.	-/-	mg/kg	TS <2	DIN EN 16167 (2019-06)	А	AL

Legende

aS	ausführender Standort	MessW	Messwert	MU	Messunsicherheit (k=2, P=95%)
os	Originalsubstanz	TS	Trockensubstanz	OS <2	Originalsubstanz der <2mm Fraktion
L-TS <2	Lufttrockensubstanz der <2mm Fraktion	TS <2	Trockensubstanz der <2mm Fraktion	AL	Altenberge
ΜÜ	München	OP	Oppin	n. n.	nicht nachgewiesen (chemisch), nicht nachweisbar (mikrobiologisch)
n. b.	nicht bestimmbar	n.a.	nicht analysiert (chemisch), nicht auswertbar (mikrobiologisch)		

	A. Allgemeine Angaben						
1	Veranlasser / Auftraggeber:	Gemeinde Schulzendorf Richard-Israel-Straße 1 15732 Schulzendorf					
2	Objekt / Standort:	Neubau interkommunaler Schulcampus Schulzendorf					
3	Grund der Probenahme:	Laboruntersuchung BBodSchV nach Mantelverordnung, Anhang 1 Tabelle 1+2 Vorsorgewerte					
4	Probenahmetag:	04.06.2024 und 05.06.2024					
5	Probenehmer / Dienststelle / Firma:	S. Graneis / Baugrundbüro Klein GmbH					
6	Anwesende Personen:	R. Klein / RK Geotechnik					
7	Herkunft des Abfalls (Anschrift):	Aufschlüsse BS 1/23, BS 2/24, BS 5/24 (0,0 - 0,3 m)					
8	Vermutete Schadstoffe / Gefährdungen:	-					
9	Untersuchungsstelle:	Wessling GmbH, Hallesches Dreieck 4/5, Landsberg OT Oppin					
		B. Vor-Ort-Gegebenheiten					
10	Abfallart / Allgemeine Beschreibung:	Oberboden, Sand, schluffig, schwach humos (Schicht 1)					
11	Gesamtvolumen Form der Lagerung:	zum Zeitpunkt der Probenahme nicht bekannt, natürliche Ablagerung					
12	Lagerungsdauer:	unbekannt					
13	Einflüsse auf das Abfallmaterial:	Witterung, Bewuchs					
14-	15 Probenahmegerät /- verfahren:	Bohrverfahren					
16	(Anzahl der) Einzel- proben:	3 Einzelproben (EP), 1 Mischprobe (MP)					
17	Anzahl der Einzelproben je Mischprobe:	MP 1 (3 EP)					
18	Probenvorbereitungs- schritte:	-					
19	Probentransport und -lagerung:	trocken und kühl, 5 L-Eimer (PE)					
20	Vor-Ort-Untersuchung:	Organoleptische Ansprache, Bestimmung Kalkgehalt mittels verd. HCl					
21	Beobachtungen bei der Probenahme	keine Auffälligkeiten					
22	Topogr. Karte (H/R-Wert):	siehe Lageplan mit Aufschlusspunkten im geotechnischen Bericht zum					
23	Lageskizze: (Lage, Entnahmepunkte)	Bauvorhaben					
24	Datum und Unterschrift: Probenehmer / Zeugen	Fig. 133					
		S. Graneis Geol., M.Sc. R. Klein DiplIng. (FH)					
		Halle (Saale), 05.06.2024					

	A. Allgemeine Angaben						
1	Veranlasser / Auftraggeber:	Gemeinde Schulzendorf Richard-Israel-Straße 1 15732 Schulzendorf					
2	Objekt / Standort:	Neubau interkommunaler Schulcampus Schulzendorf					
3	Grund der Probenahme:	Laboruntersuchung BBodSchV nach Mantelverordnung, Anhang 1 Tabelle 1+2 Vorsorgewerte					
4	Probenahmetag:	04.06.2024 und 05.06.2024					
5	Probenehmer / Dienststelle / Firma:	S. Graneis / Baugrundbüro Klein GmbH					
6	Anwesende Personen:	R. Klein / RK Geotechnik					
7	Herkunft des Abfalls (Anschrift):	Aufschlüsse BS 4/23, BS 7/24, BS 8/24 (0,0 - 0,3 m)					
8	Vermutete Schadstoffe / Gefährdungen:	-					
9	Untersuchungsstelle:	Wessling GmbH, Hallesches Dreieck 4/5, Landsberg OT Oppin					
		B. Vor-Ort-Gegebenheiten					
10	Abfallart / Allgemeine Beschreibung:	Oberboden, Sand, schluffig, schwach humos (Schicht 1)					
11	Gesamtvolumen Form der Lagerung:	zum Zeitpunkt der Probenahme nicht bekannt, natürliche Ablagerung					
12	Lagerungsdauer:	unbekannt					
13	Einflüsse auf das Abfallmaterial:	Witterung, Bewuchs					
14-	15 Probenahmegerät /- verfahren:	Bohrverfahren					
16	(Anzahl der) Einzel- proben:	3 Einzelproben (EP), 1 Mischprobe (MP)					
17	Anzahl der Einzelproben je Mischprobe:	MP 1 (3 EP)					
18	Probenvorbereitungs- schritte:	-					
19	Probentransport und -lagerung:	trocken und kühl, 5 L-Eimer (PE)					
20	Vor-Ort-Untersuchung:	Organoleptische Ansprache, Bestimmung Kalkgehalt mittels verd. HCl					
21	Beobachtungen bei der Probenahme	keine Auffälligkeiten					
22	Topogr. Karte (H/R-Wert):	siehe Lageplan mit Aufschlusspunkten im geotechnischen Bericht zum					
23	Lageskizze: (Lage, Entnahmepunkte)	Bauvorhaben					
24	Datum und Unterschrift: Probenehmer / Zeugen	Fig. 134					
		S. Graneis Geol., M.Sc. R. Klein DiplIng. (FH)					
		Halle (Saale), 05.06.2024					

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 7 Blatt 1

WESSLING GmbH, Moritzburger Weg 67, 01109 Dresden

RK Geotechnik Betratender Ingenieur Inh. R. Klein Herr Ralf Klein Querstraße 4 06120 Halle Saale Geschäftsfeld: Umwelt

Ansprechpartner R. Teufert

Durchwahl: +49 351 8 116 4927

E-Mail: Roswitha. Teufert
@wessling.de

Prüfbericht

Prüfbericht Nr.: CDR24-003245-1 Datum: 21.06.2024

Auftrag Nr.: CDR-00900-24

Steff Schu {

Auftrag: Auftrags-Nr.: RK-006/04/2024

BV: Neubau interkommunaler Schulcampus Schulzendorf

i.A.

Stefan Schulz

Abteilungsleiter Umwelt und Wasser Dipl.-Ing. Technischer Umweltschutz

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 7 Blatt 2

Probeninformation

Probe Nr.	24-074345-01
Bezeichnung	MP3
Probenart	Boden
Probenahme durch	Auftraggeber
Probengefäß	5l Eimer
Anzahl Gefäße	1
Eingangsdatum	10.06.2024
Untersuchungsbeginn	10.06.2024
Untersuchungsende	21.06.2024

Auswahl der Verfahren

	24-074345-01	Einheit	Bezug	Methode	aS
Analytik gemäß	Ersatzbaustoff- verordnung				AL

Probenvorbereitungsprotokoll nach DIN 19747 in Verbindung mit DIN EN 932-2

	24-074345-01	Einheit	Bezug	Methode		aS
Anzahl der Prüfproben	4			DIN 19747 (2009-07)	А	МÜ
Siebung	Nein			DIN 19747 (2009-07)	А	МÜ
Rückstellprobe	1900			DIN 19747 (2009-07)	А	ΜÜ
Gefriertrocknung	Nein			DIN 19747 (2009-07)	А	ΜÜ
Lufttrocknung (40°C)	Ja			DIN 19747 (2009-07)	А	ΜÜ
Trocknung (105°C)	Ja			DIN 19747 (2009-07)	Α	ΜÜ
Homogenisierung / Teilung	Fraktionierte Teilung			DIN 19747 (2009-07)	Α	МÜ
Sortierung	Nein			DIN 19747 (2009-07)	Α	МÜ
Chem. Trocknung (Na2SO4, H2O-frei)	Nein			DIN 19747 (2009-07)	Α	МÜ
Chem. Trocknung (Al2O3, H2O-frei)	Nein			DIN 19747 (2009-07)	А	МÜ
Mahlen	Ja			DIN 19747 (2009-07)	А	МÜ
Bruttogewicht Rückstellprobe	1900	g	os	DIN 19747 (2009-07)	А	МÜ

Physikalisch-chemische Untersuchung

	24-074345-01	Einheit	Bezug	Methode		aS
Trockensubstanz	95,0	Gew%	os	DIN EN 14346 (2007-03)	Α	МÜ

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 7 Blatt 3

Aus der Gesamtfraktion bezogen auf Trockenmasse

Aufschlussverfahren

	24-074345-01	Einheit	Bezug	Methode		aS
Königswasser-Extrakt	12.06.2024		L-TS	DIN EN 13657 Verf. 3 (2003-01) mod.	Α	МÜ

Polycyclische aromatische Kohlenwasserstoffe (PAK)

	24-074345-01	Einheit	Bezug	Methode		aS
Naphthalin	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Acenaphthylen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Acenaphthen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Fluoren	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Phenanthren	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Anthracen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Fluoranthen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Pyren	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Benzo(a)anthracen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Chrysen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Benzo(b)fluoranthen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Benzo(k)fluoranthen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Benzo(a)pyren	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Dibenz(a,h)anthracen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Benzo(ghi)perylen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Indeno(1,2,3-cd)pyren	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Summe quantifizierter PAK16	n. b.	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	ΜÜ
Summe PAK16 nach ErsatzbaustoffV	n. b.	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ

Elemente

	24-074345-01	Einheit	Bezug	Methode		aS
Arsen (As)	3,7	mg/kg	TS	DIN EN 16171 (2017-01)	Α	МÜ
Blei (Pb)	5,6	mg/kg	TS	DIN EN 16171 (2017-01)	А	МÜ
Cadmium (Cd)	<0,1	mg/kg	TS	DIN EN 16171 (2017-01)	Α	МÜ
Chrom (Cr)	7,1	mg/kg	TS	DIN EN 16171 (2017-01)	А	МÜ
Kupfer (Cu)	5,0	mg/kg	TS	DIN EN 16171 (2017-01)	Α	МÜ
Nickel (Ni)	6,1	mg/kg	TS	DIN EN 16171 (2017-01)	А	МÜ
Thallium (TI)	<0,1	mg/kg	TS	DIN EN 16171 (2017-01)	А	МÜ
Zink (Zn)	<20	mg/kg	TS	DIN EN 16171 (2017-01)	А	МÜ
Quecksilber (Hg)	<0,05	mg/kg	TS	DIN EN ISO 12846 (2012-08)	Α	МÜ

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 7 Blatt 4

Summenparameter

	24-074345-01	Einheit	Bezug	Methode		aS
TOC	0,13	Gew%	TS	DIN EN 15936 (2012-11)	Α	OP
Kohlenwasserstoffe C10-C22	<32	mg/kg	TS	DIN EN 14039 (2005-01) i.V. LAGA KW/04 (2019-09)	Α	МÜ
Kohlenwasserstoffe C10-C40	<32	mg/kg	TS	DIN EN 14039 (2005-01) i.V. LAGA KW/04 (2019-09)	Α	МÜ

Eluaterstellung

	24-074345-01	Einheit	Bezug	Methode		aS
Datum Beginn der Prüfung	11.06.2024	d	os	DIN 19529 (2015-12)	Α	МÜ
Uhrzeit Beginn der Prüfung	11:57 Uhr	h	os	DIN 19529 (2015-12)	Α	МÜ
Datum Ende der Prüfung	12.06.2024	d	os	DIN 19529 (2015-12)	Α	МÜ
Uhrzeit Ende der Prüfung	11:57 Uhr	h	os	DIN 19529 (2015-12)	А	МÜ
Masse ungetrocknete Probe	1052,1	g	os	DIN 19529 (2015-12)	Α	МÜ
Volumen des Elutionsmittels	1947,88	ml	os	DIN 19529 (2015-12)	А	МÜ

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Im Eluat gemäß DIN 19529

Anlage 7 Blatt 5

	24-074345-01	Einheit	Bezug	Methode		aS
Leitfähigkeit [25°C], elektrische	78	μS/cm	EL 2:1	DIN EN 27888 (1993-11)	А	МÜ
Sulfat (SO4)	<10	mg/l	EL 2:1	DIN EN ISO 10304-1 (2009-07)	Α	ΜÜ
Arsen (As)	4,1	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	Α	НА
Blei (Pb)	<5	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	Α	НА
Cadmium (Cd)	<0,5	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	А	НА
Chrom (Cr)	<3	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	Α	НА
Kupfer (Cu)	8,1	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	Α	НА
Nickel (Ni)	<5	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	Α	НА
Zink (Zn)	<30	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	Α	НА
Thallium (TI), gelöst	<0,2	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	А	НА
Quecksilber (Hg)	<0,05	μg/l	EL 2:1	DIN EN ISO 12846 (2012-08)	Α	МÜ
pH-Wert	7,3		EL 2:1	DIN EN ISO 10523 (2012-04)	Α	МÜ
Messtemperatur pH-Wert	24,6	°C	EL 2:1	DIN EN ISO 10523 (2012-04)	Α	МÜ

Polycyclische aromatische Kohlenwasserstoffe (PAK)

	24-074345-01	Einheit	Bezug	Methode		aS
Acenaphthylen, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	МÜ
Acenaphthen, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	МÜ
Fluoren, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Phenanthren, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Anthracen, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Fluoranthen, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Pyren, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Benzo(a)anthracen, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Chrysen, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Benzo(b)fluoranthen, gelöst	<0,01	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Benzo(k)fluoranthen, gelöst	<0,01	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Benzo(a)pyren, gelöst	<0,004	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Dibenz(a,h)anthracen, gelöst	<0,01	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Benzo(ghi)perylen, gelöst	<0,01	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Indeno(1,2,3-cd)pyren, gelöst	<0,01	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	МÜ
Summe quantifizierter PAK nach EPA ohne Naphthaline	n. b.	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	МÜ
Summe PAK15 nach ErsatzbaustoffV, gelöst	n. b.	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Naphthalin, gelöst	0,05	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	MÜ
1-Methylnaphthalin, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	MÜ
2-Methylnaphthalin, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	MÜ
Summe quantifizierter Naphthaline	0,05	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Summe Naphthaline nach ErsatzbaustoffV	0,07	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 7 Blatt 6

Probeninformation

Probe Nr.	24-074345-02
Bezeichnung	MP4
Probenart	Boden
Probenahme durch	Auftraggeber
Probengefäß	5l Eimer
Anzahl Gefäße	1
Eingangsdatum	10.06.2024
Untersuchungsbeginn	10.06.2024
Untersuchungsende	21.06.2024

Auswahl der Verfahren

	24-074345-02	Einheit	Bezug	Methode	aS
Analytik gemäß	Ersatzbaustoff- verordnung				AL

Probenvorbereitungsprotokoll nach DIN 19747 in Verbindung mit DIN EN 932-2

	24-074345-02	Einheit	Bezug	Methode		aS
Anzahl der Prüfproben	4			DIN 19747 (2009-07)	A	МÜ
Siebung	Nein			DIN 19747 (2009-07)	Α	МÜ
Rückstellprobe	1400			DIN 19747 (2009-07)	Α	МÜ
Gefriertrocknung	Nein			DIN 19747 (2009-07)	Α	МÜ
Lufttrocknung (40°C)	Ja			DIN 19747 (2009-07)	Α	МÜ
Trocknung (105°C)	Ja			DIN 19747 (2009-07)	Α	МÜ
Homogenisierung / Teilung	Fraktionierte Teilung			DIN 19747 (2009-07)	Α	МÜ
Sortierung	Nein			DIN 19747 (2009-07)	Α	МÜ
Chem. Trocknung (Na2SO4, H2O-frei)	Nein			DIN 19747 (2009-07)	Α	МÜ
Chem. Trocknung (Al2O3, H2O-frei)	Nein			DIN 19747 (2009-07)	Α	МÜ
Mahlen	Ja			DIN 19747 (2009-07)	Α	МÜ
Bruttogewicht Rückstellprobe	1400	g	os	DIN 19747 (2009-07)	А	МÜ

Physikalisch-chemische Untersuchung

	24-074345-02	Einheit	Bezug	Methode		aS
Trockensubstanz	91,6	Gew%	os	DIN EN 14346 (2007-03)	Α	МÜ

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Aus der Gesamtfraktion bezogen auf Trockenmasse

Anlage 7 Blatt 7

Aufschlussverfahren

	24-074345-02	Einheit	Bezug	Methode		aS
Königswasser-Extrakt	12.06.2024		L-TS	DIN EN 13657 Verf. 3 (2003-01) mod.	Α	ΜÜ

Polycyclische aromatische Kohlenwasserstoffe (PAK)

	24-074345-02	Einheit	Bezug	Methode		aS
Naphthalin	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Acenaphthylen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Acenaphthen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Fluoren	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Phenanthren	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Anthracen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Fluoranthen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Pyren	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Benzo(a)anthracen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Chrysen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Benzo(b)fluoranthen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Benzo(k)fluoranthen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Benzo(a)pyren	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Dibenz(a,h)anthracen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Benzo(ghi)perylen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Indeno(1,2,3-cd)pyren	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Summe quantifizierter PAK16	n.b.	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Summe PAK16 nach ErsatzbaustoffV	n.b.	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ

Elemente

	24-074345-02	Einheit	Bezug	Methode		aS
Arsen (As)	4,5	mg/kg	TS	DIN EN 16171 (2017-01)	Α	мü
Blei (Pb)	5,9	mg/kg	TS	DIN EN 16171 (2017-01)	Α	МÜ
Cadmium (Cd)	0,21	mg/kg	TS	DIN EN 16171 (2017-01)	Α	МÜ
Chrom (Cr)	16	mg/kg	TS	DIN EN 16171 (2017-01)	Α	МÜ
Kupfer (Cu)	9,3	mg/kg	TS	DIN EN 16171 (2017-01)	Α	МÜ
Nickel (Ni)	12	mg/kg	TS	DIN EN 16171 (2017-01)	Α	МÜ
Thallium (TI)	<0,1	mg/kg	TS	DIN EN 16171 (2017-01)	Α	МÜ
Zink (Zn)	27	mg/kg	TS	DIN EN 16171 (2017-01)	Α	МÜ
Quecksilber (Hg)	<0,05	mg/kg	TS	DIN EN ISO 12846 (2012-08)	Α	МÜ

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 7 Blatt 8

Summenparameter

	24-074345-02	Einheit	Bezug	Methode		aS
тос	0,11	Gew%	TS	DIN EN 15936 (2012-11)	A	OP
Kohlenwasserstoffe C10-C22	<33	mg/kg	TS	DIN EN 14039 (2005-01) i.V. LAGA KW/04 (2019-09)	A I	ΜÜ
Kohlenwasserstoffe C10-C40	<33	mg/kg	TS	DIN EN 14039 (2005-01) i.V. LAGA KW/04 (2019-09)	A I	МÜ

Eluaterstellung

	24-074345-02	Einheit	Bezug	Methode		aS
Datum Beginn der Prüfung	11.06.2024	d	os	DIN 19529 (2015-12)	Α	МÜ
Uhrzeit Beginn der Prüfung	11:57 Uhr	h	os	DIN 19529 (2015-12)	Α	МÜ
Datum Ende der Prüfung	12.06.2024	d	os	DIN 19529 (2015-12)	Α	МÜ
Uhrzeit Ende der Prüfung	11:57 Uhr	h	os	DIN 19529 (2015-12)	Α	МÜ
Masse ungetrocknete Probe	1091,4	g	os	DIN 19529 (2015-12)	Α	МÜ
Volumen des Elutionsmittels	1908,59	ml	os	DIN 19529 (2015-12)	Α	МÜ

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Im Eluat gemäß DIN 19529

Anlage 7 Blatt 9

	24-074345-02	Einheit	Bezug	Methode		aS
Leitfähigkeit [25°C], elektrische	144	μS/cm	EL 2:1	DIN EN 27888 (1993-11)	А	МÜ
Sulfat (SO4)	<10	mg/l	EL 2:1	DIN EN ISO 10304-1 (2009-07)	Α	ΜÜ
Arsen (As)	<3	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	Α	НА
Blei (Pb)	<5	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	А	НА
Cadmium (Cd)	<0,5	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	А	НА
Chrom (Cr)	<3	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	Α	НА
Kupfer (Cu)	<5	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	А	НА
Nickel (Ni)	<5	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	Α	НА
Zink (Zn)	<30	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	Α	НА
Thallium (TI), gelöst	<0,2	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	А	НА
Quecksilber (Hg)	<0,05	μg/l	EL 2:1	DIN EN ISO 12846 (2012-08)	А	МÜ
pH-Wert	7,6		EL 2:1	DIN EN ISO 10523 (2012-04)	А	МÜ
Messtemperatur pH-Wert	24,3	°C	EL 2:1	DIN EN ISO 10523 (2012-04)	А	МÜ

Polycyclische aromatische Kohlenwasserstoffe (PAK)

	24-074345-02	Einheit	Bezug	Methode		aS
Acenaphthylen, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	А	МÜ
Acenaphthen, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	МÜ
Fluoren, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	МÜ
Phenanthren, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	МÜ
Anthracen, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	МÜ
Fluoranthen, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Pyren, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Benzo(a)anthracen, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	A	ΜÜ
Chrysen, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	A	ΜÜ
Benzo(b)fluoranthen, gelöst	<0,01	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	A	ΜÜ
Benzo(k)fluoranthen, gelöst	<0,01	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	A	ΜÜ
Benzo(a)pyren, gelöst	<0,004	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	A	ΜÜ
Dibenz(a,h)anthracen, gelöst	<0,01	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Benzo(ghi)perylen, gelöst	<0,01	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	A	МÜ
Indeno(1,2,3-cd)pyren, gelöst	<0,01	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Summe quantifizierter PAK nach EPA ohne Naphthaline	n. b.	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	МÜ
Summe PAK15 nach ErsatzbaustoffV, gelöst	n. b.	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	A	ΜÜ
Naphthalin, gelöst	0,06	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	A	МÜ
1-Methylnaphthalin, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	A	МÜ
2-Methylnaphthalin, gelöst	<0,03	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Summe quantifizierter Naphthaline	0,06	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	МÜ
Summe Naphthaline nach ErsatzbaustoffV	0,08	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	МÜ

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 7 Blatt 10

Probeninformation

Probe Nr.	24-074345-03
Bezeichnung	MP5
Probenart	Boden
Probenahme durch	Auftraggeber
Probengefäß	5l Eimer
Anzahl Gefäße	1
Eingangsdatum	10.06.2024
Untersuchungsbeginn	10.06.2024
Untersuchungsende	21.06.2024

Auswahl der Verfahren

	24-074345-03	Einheit	Bezug	Methode	aS
Analytik gemäß	Ersatzbaustoff- verordnung				AL

Probenvorbereitungsprotokoll nach DIN 19747 in Verbindung mit DIN EN 932-2

	24-074345-03	Einheit	Bezug	Methode		aS
Anzahl der Prüfproben	4			DIN 19747 (2009-07)	Α	МÜ
Siebung	Nein			DIN 19747 (2009-07)	Α	МÜ
Rückstellprobe	1400			DIN 19747 (2009-07)	Α	МÜ
Gefriertrocknung	Nein			DIN 19747 (2009-07)	Α	МÜ
Lufttrocknung (40°C)	Ja			DIN 19747 (2009-07)	Α	МÜ
Trocknung (105°C)	Ja			DIN 19747 (2009-07)	Α	МÜ
Homogenisierung / Teilung	Fraktionierte Teilung			DIN 19747 (2009-07)	Α	МÜ
Sortierung	Nein			DIN 19747 (2009-07)	Α	МÜ
Chem. Trocknung (Na2SO4, H2O-frei)	Nein			DIN 19747 (2009-07)	Α	МÜ
Chem. Trocknung (Al2O3, H2O-frei)	Nein			DIN 19747 (2009-07)	Α	МÜ
Mahlen	Ja			DIN 19747 (2009-07)	Α	МÜ
Bruttogewicht Rückstellprobe	1400	g	os	DIN 19747 (2009-07)	Α	МÜ

Physikalisch-chemische Untersuchung

	24-074345-03	Einheit	Bezug	Methode		aS
Trockensubstanz	93,9	Gew%	os	DIN EN 14346 (2007-03)	A	МÜ

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Aus der Gesamtfraktion bezogen auf Trockenmasse

Anlage 7 Blatt 11

Aufschlussverfahren

	24-074345-03	Einheit	Bezug	Methode		aS	
Königswasser-Extrakt	12.06.2024		L-TS	DIN EN 13657 Verf. 3 (2003-01) mod.	Α	МÜ	1

Polycyclische aromatische Kohlenwasserstoffe (PAK)

	24-074345-03	Einheit	Bezug	Methode		aS
Naphthalin	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Acenaphthylen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Acenaphthen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Fluoren	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Phenanthren	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Anthracen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Fluoranthen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Pyren	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Benzo(a)anthracen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Chrysen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Benzo(b)fluoranthen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ
Benzo(k)fluoranthen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Benzo(a)pyren	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Dibenz(a,h)anthracen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Benzo(ghi)perylen	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Indeno(1,2,3-cd)pyren	<0,02	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	МÜ
Summe quantifizierter PAK16	n. b.	mg/kg	TS	DIN ISO 18287 (2006-05)	Α	ΜÜ
Summe PAK16 nach ErsatzbaustoffV	n. b.	mg/kg	TS	DIN ISO 18287 (2006-05)	А	МÜ

Elemente

	24-074345-03	Einheit	Bezug	Methode		aS
Arsen (As)	<3	mg/kg	TS	DIN EN 16171 (2017-01)	Α	МÜ
Blei (Pb)	5,4	mg/kg	TS	DIN EN 16171 (2017-01)	Α	МÜ
Cadmium (Cd)	0,13	mg/kg	TS	DIN EN 16171 (2017-01)	Α	МÜ
Chrom (Cr)	12	mg/kg	TS	DIN EN 16171 (2017-01)	Α	МÜ
Kupfer (Cu)	6,4	mg/kg	TS	DIN EN 16171 (2017-01)	Α	МÜ
Nickel (Ni)	9,2	mg/kg	TS	DIN EN 16171 (2017-01)	Α	МÜ
Thallium (TI)	<0,1	mg/kg	TS	DIN EN 16171 (2017-01)	Α	МÜ
Zink (Zn)	<20	mg/kg	TS	DIN EN 16171 (2017-01)	А	МÜ
Quecksilber (Hg)	<0,05	mg/kg	TS	DIN EN ISO 12846 (2012-08)	Α	МÜ

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 7 Blatt 12

Summenparameter

	24-074345-03	Einheit	Bezug	Methode		aS
тос	0,13	Gew%	TS	DIN EN 15936 (2012-11)	Α	OP
Kohlenwasserstoffe C10-C22	<32	mg/kg	TS	DIN EN 14039 (2005-01) i.V. LAGA KW/04 (2019-09)	Α	ΜÜ
Kohlenwasserstoffe C10-C40	<32	mg/kg	TS	DIN EN 14039 (2005-01) i.V. LAGA KW/04 (2019-09)	Α	МÜ

Eluaterstellung

	24-074345-03	Einheit	Bezug	Methode		aS
Datum Beginn der Prüfung	11.06.2024	d	os	DIN 19529 (2015-12)	Α	МÜ
Uhrzeit Beginn der Prüfung	11:57 Uhr	h	os	DIN 19529 (2015-12)	Α	МÜ
Datum Ende der Prüfung	12.06.2024	d	os	DIN 19529 (2015-12)	Α	МÜ
Uhrzeit Ende der Prüfung	11:57 Uhr	h	os	DIN 19529 (2015-12)	А	МÜ
Masse ungetrocknete Probe	1065,3	g	os	DIN 19529 (2015-12)	Α	МÜ
Volumen des Elutionsmittels	1934,73	ml	os	DIN 19529 (2015-12)	А	МÜ

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Im Eluat gemäß DIN 19529

Anlage 7 Blatt 13

	24-074345-03	Einheit	Bezug	Methode		aS
Leitfähigkeit [25°C], elektrische	160	μS/cm	EL 2:1	DIN EN 27888 (1993-11)	А	МÜ
Sulfat (SO4)	<10	mg/l	EL 2:1	DIN EN ISO 10304-1 (2009-07)	А	МÜ
Arsen (As)	<3	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	А	НА
Blei (Pb)	<5	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	А	НА
Cadmium (Cd)	<0,5	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	А	НА
Chrom (Cr)	<3	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	Α	НА
Kupfer (Cu)	<5	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	А	НА
Nickel (Ni)	<5	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	А	НА
Zink (Zn)	<30	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	Α	НА
Thallium (TI), gelöst	<0,2	μg/l	EL 2:1	DIN EN ISO 17294-2 (2017-01)	Α	НА
Quecksilber (Hg)	<0,05	μg/l	EL 2:1	DIN EN ISO 12846 (2012-08)	А	МÜ
pH-Wert	7,5		EL 2:1	DIN EN ISO 10523 (2012-04)	Α	МÜ
Messtemperatur pH-Wert	24,6	°C	EL 2:1	DIN EN ISO 10523 (2012-04)	Α	МÜ

Polycyclische aromatische Kohlenwasserstoffe (PAK)

	24-074345-03	Einheit	Bezug	Methode		aS
Acenaphthylen, gelöst	<0,02	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	A	МÜ
Acenaphthen, gelöst	<0,02	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	МÜ
Fluoren, gelöst	<0,02	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	МÜ
Phenanthren, gelöst	<0,02	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	А	МÜ
Anthracen, gelöst	<0,02	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	МÜ
Fluoranthen, gelöst	<0,02	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Pyren, gelöst	<0,02	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	А	ΜÜ
Benzo(a)anthracen, gelöst	<0,02	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	А	ΜÜ
Chrysen, gelöst	<0,02	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Benzo(b)fluoranthen, gelöst	<0,01	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	A	МÜ
Benzo(k)fluoranthen, gelöst	<0,01	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Benzo(a)pyren, gelöst	<0,004	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Dibenz(a,h)anthracen, gelöst	<0,01	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Benzo(ghi)perylen, gelöst	<0,01	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	А	ΜÜ
Indeno(1,2,3-cd)pyren, gelöst	<0,01	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Summe quantifizierter PAK nach EPA ohne Naphthaline	n. b.	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	А	МÜ
Summe PAK15 nach ErsatzbaustoffV, gelöst	n. b.	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	A	МÜ
Naphthalin, gelöst	<0,02	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	A	МÜ
1-Methylnaphthalin, gelöst	<0,02	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	А	ΜÜ
2-Methylnaphthalin, gelöst	<0,02	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	ΜÜ
Summe quantifizierter Naphthaline	n. b.	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	МÜ
Summe Naphthaline nach ErsatzbaustoffV	n. b.	μg/l	EL 2:1	DIN EN ISO 17993 (2004-03)	Α	МÜ

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

24-074345-01 Anlage 7 Blatt 14

Kommentare der Ergebnisse:

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, 1-Methylnaphthalin, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, 2-Methylnaphthalin, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Acenaphthen, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Fluoren, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Phenanthren, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Fluoranthen, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Pyren, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Benzo(a)anthracen, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Chrysen, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Benzo(k)fluoranthen, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Benzo(a)pyren, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Benzo(ghi)perylen, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

24-074345-02

Kommentare der Ergebnisse:

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, 1-Methylnaphthalin, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, 2-Methylnaphthalin, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Acenaphthen, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Fluoren, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Phenanthren, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Anthracen, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Fluoranthen, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Pyren, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Benzo(a)anthracen, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Benzo(a)pyren, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Benzo(ghi)perylen, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

24-074345-03

Kommentare der Ergebnisse:

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Naphthalin, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, 1-Methylnaphthalin, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, 2-Methylnaphthalin, 2:1 gelöst: Bestimmungsgrenze musste aufgrund

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Anlage 7 Blatt 15

von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Acenaphthen, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Fluoren, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Phenanthren, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Anthracen, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Fluoranthen, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Pyren, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Benzo(a)anthracen, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Benzo(k)fluoranthen, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

PAK, gel. El 2:1 (F min) (LC-FLD) gem. d. Anf. EBV, Benzo(a)pyren, 2:1 gelöst: Bestimmungsgrenze musste aufgrund von analytischen Erfordernissen angehoben werden.

Norm Modifikation

DIN EN 13657 Verf. 3 (2003-01) mod. Aufschluss mit DigiPrep

Legende

aS	ausführender Standort	os	Originalsubstanz	L-TS	Luftrockensubstanz
TS	Trockensubstanz	EL 2:1	Eluat mit Wasser-Feststoff-Verhältnis 2:1	AL	Altenberge
ΜÜ	München	OP	Oppin	HA	Hannover
n. n.	nicht nachgewiesen (chemisch), nicht nachweisbar	n. b.	nicht bestimmbar	n.a.	nicht analysiert (chemisch), nicht auswertbar

		A. Allgemeine Angaben
1	Veranlasser / Auftraggeber:	Gemeinde Schulzendorf Richard-Israel-Straße 1 15732 Schulzendorf
2	Objekt / Standort:	Neubau interkommunaler Schulcampus Schulzendorf
3	Grund der Probenahme:	Laboruntersuchung Ersatzbaustoffverordnung Anlage 1, Tabelle 3 Standarduntersuchung für Bodenmaterial
4	Probenahmetag:	04.06.2024 und 05.06.2024
5	Probenehmer / Dienststelle / Firma:	S. Graneis / Baugrundbüro Klein GmbH
6	Anwesende Personen:	R. Klein / RK Geotechnik
7	Herkunft des Abfalls (Anschrift): Vermutete Schadstoffe /	Aufschlüsse BS 1/23, BS 1/24, BS 3/24 (0,25 - 1,00 m)
8	Gefährdungen:	-
9	Untersuchungsstelle:	Wessling GmbH, Hallesches Dreieck 4/5, Landsberg OT Oppin
		B. Vor-Ort-Gegebenheiten
10	Abfallart / Allgemeine Beschreibung:	Sande mit schwankenden Schluffgehalten (Schicht 3)
11	Gesamtvolumen Form der Lagerung:	zum Zeitpunkt der Probenahme nicht bekannt, natürliche Ablagerung
12	Lagerungsdauer:	unbekannt
13	Einflüsse auf das Abfallmaterial:	Witterung, Bewuchs
14-	15 Probenahmegerät /- verfahren:	Bohrverfahren
16	(Anzahl der) Einzel- proben:	3 Einzelproben (EP), 1 Mischprobe (MP)
17	Anzahl der Einzelproben je Mischprobe:	MP 1 (3 EP)
18	Probenvorbereitungs- schritte:	-
19	Probentransport und -lagerung:	trocken und kühl, 5 L-Eimer (PE)
20	Vor-Ort-Untersuchung:	Organoleptische Ansprache, Bestimmung Kalkgehalt mittels verd. HCl
21	Beobachtungen bei der Probenahme	keine Auffälligkeiten
22	Topogr. Karte (H/R-Wert):	siehe Lageplan mit Aufschlusspunkten im geotechnischen Bericht zum
23	Lageskizze: (Lage, Entnahmepunkte)	Bauvorhaben
24	Datum und Unterschrift: Probenehmer / Zeugen	Fight Signature of the state of
		S. Graneis Geol., M.Sc. R. Klein DiplIng. (FH)
		Halle (Saale), 05.06.2024

		A. Allgemeine Angaben
1	Veranlasser / Auftraggeber:	Gemeinde Schulzendorf Richard-Israel-Straße 1 15732 Schulzendorf
2	Objekt / Standort:	Neubau interkommunaler Schulcampus Schulzendorf
3	Grund der Probenahme:	Laboruntersuchung Ersatzbaustoffverordnung Anlage 1, Tabelle 3 Standarduntersuchung für Bodenmaterial
4	Probenahmetag:	04.06.2024 und 05.06.2024
5	Probenehmer / Dienststelle / Firma:	S. Graneis / Baugrundbüro Klein GmbH
6	Anwesende Personen:	R. Klein / RK Geotechnik
7	Herkunft des Abfalls (Anschrift):	Aufschlüsse BS 4/23, BS 5/24, BS 6/24 (0,30 - 2,00 m)
8	Vermutete Schadstoffe / Gefährdungen:	-
9	Untersuchungsstelle:	Wessling GmbH, Hallesches Dreieck 4/5, Landsberg OT Oppin
		B. Vor-Ort-Gegebenheiten
10	Abfallart / Allgemeine Beschreibung:	Sande mit schwankenden Schluffgehalten (Schicht 3)
11	Gesamtvolumen Form der Lagerung:	zum Zeitpunkt der Probenahme nicht bekannt, natürliche Ablagerung
12	Lagerungsdauer:	unbekannt
13	Einflüsse auf das Abfallmaterial:	Witterung, Bewuchs
14-	15 Probenahmegerät /- verfahren:	Bohrverfahren
16	(Anzahl der) Einzel- proben:	3 Einzelproben (EP), 1 Mischprobe (MP)
17	Anzahl der Einzelproben je Mischprobe:	MP 1 (3 EP)
18	Probenvorbereitungs- schritte:	-
19	Probentransport und -lagerung:	trocken und kühl, 5 L-Eimer (PE)
20	Vor-Ort-Untersuchung:	Organoleptische Ansprache, Bestimmung Kalkgehalt mittels verd. HCl
21	Beobachtungen bei der Probenahme	keine Auffälligkeiten
22	Topogr. Karte (H/R-Wert):	siehe Lageplan mit Aufschlusspunkten im geotechnischen Bericht zum
23	Lageskizze: (Lage, Entnahmepunkte)	Bauvorhaben
24	Datum und Unterschrift: Probenehmer / Zeugen	Fig. 1. St. 1. S
		S. Graneis Geol., M.Sc. R. Klein DiplIng. (FH)
		Halle (Saale), 05.06.2024

	A. Allgemeine Angaben								
1	Veranlasser / Auftraggeber:	Gemeinde Schulzendorf Richard-Israel-Straße 1 15732 Schulzendorf							
2	Objekt / Standort:	Neubau interkommunaler Schulcampus Schulzendorf							
3	Grund der Probenahme:	Laboruntersuchung Ersatzbaustoffverordnung Anlage 1, Tabelle 3 Standarduntersuchung für Bodenmaterial							
4	Probenahmetag:	04.06.2024 und 05.06.2024							
5	Probenehmer / Dienststelle / Firma:	S. Graneis / Baugrundbüro Klein GmbH							
6	Anwesende Personen:	R. Klein / RK Geotechnik							
7	Herkunft des Abfalls (Anschrift):	Aufschlüsse BS 7/23, BS 8/24, BS 9/24 (0,30 - 2,00 m)							
8	Vermutete Schadstoffe / Gefährdungen:	-							
9	Untersuchungsstelle:	Wessling GmbH, Hallesches Dreieck 4/5, Landsberg OT Oppin							
	B. Vor-Ort-Gegebenheiten								
10	Abfallart / Allgemeine Beschreibung:	Sande mit schwankenden Schluffgehalten (Schicht 3)							
11	Gesamtvolumen Form der Lagerung:	zum Zeitpunkt der Probenahme nicht bekannt, natürliche Ablagerung							
12	Lagerungsdauer:	unbekannt							
13	Einflüsse auf das Abfallmaterial:	Witterung, Bewuchs							
14-	15 Probenahmegerät /- verfahren:	Bohrverfahren							
16	(Anzahl der) Einzel- proben:	3 Einzelproben (EP), 1 Mischprobe (MP)							
17	Anzahl der Einzelproben je Mischprobe:	MP 1 (3 EP)							
18	Probenvorbereitungs- schritte:	-							
19	Probentransport und -lagerung:	trocken und kühl, 5 L-Eimer (PE)							
20	Vor-Ort-Untersuchung:	Organoleptische Ansprache, Bestimmung Kalkgehalt mittels verd. HCl							
21	Beobachtungen bei der Probenahme	keine Auffälligkeiten							
22	Topogr. Karte (H/R-Wert):	siehe Lageplan mit Aufschlusspunkten im geotechnischen Bericht zum Bauvorhaben							
23	Lageskizze: (Lage, Entnahmepunkte)								
24	Datum und Unterschrift: Probenehmer / Zeugen	Fight Signature of the state of							
		S. Graneis Geol., M.Sc. R. Klein DiplIng. (FH)							
		Halle (Saale), 05.06.2024							

Anlage 8 Blatt 1

Landesamt für Umwelt

Abteilung Wasserwirtschaft 1 Referat W12

Landesamt für Umwelt Postfach 60 10 61 | 14410 Potsdam

Herrn Klein

RK-GEOTECHNIK <info@rk-geotechnik.de>

Bearb.: Herr Thomas Claus

Gesch-Z.: 105-W12-

3000/378+151#191586/2024 Hausruf: +49 33201 442 449 Fax: +49 33201 442 662 Internet: www.lfu.brandenburg.de hydrologiedaten@lfu.brandenburg.de

Cottbus, 28.05.2024

191-586 Erbitte hydrogeologische Stellungnahme für den Schulcampus Schulzendorf LDS Ihr Schreiben vom 24.05.2024

Anlagen

Anlage 1 - Übersichtskarte

Anlage 2 - Grundwasserstandsganglinien

Sehr geehrter Herr Klein,

mit Schreiben vom 24.05.2024 baten Sie um Grundwasserstandsangaben für den Bereich Schulzendorf (LDS).

Allgemeine Informationen:

Standortspezifische Bemessungsgrundwasserstände werden von Sachverständigen, z. B. Baugrundingenieuren, unter Zuhilfenahme von Erhebungen am Standort (Bohrungen, Baugrunduntersuchungen) ermittelt. Dabei sind auch örtliche Besonderheiten, wie beispielsweise die Hydrogeologie (un-/bedeckter Grundwasserleiter), die Nähe zu einem Oberflächengewässer oder die Lage in einem durch Wasserentnahmen beeinflussten Gebiet, zu beachten. Das Landesamt für Umwelt (LfU) stellt lediglich die langjährigen Vergleichswerte der Landesmessnetze zur Verfügung.

Informationen, z.B. über die hydrogeologischen Verhältnisse oder zu Bohrungen, können beim Landesamt für Bergbau, Geologie und Rohstoffe (LBGR) eingeholt werden. (LBGR - http://www.lbgr.brandenburg.de).

Hauptsitz: Seeburger Chaussee 2 14476 Potsdam OT Groß Glienicke

Anlage 8 Blatt 2

Grundwasserstandsangaben:

Grundwassermessstelle 3647 1402, Kiekebusch (Vorg.: 3647 1401, Kiekebusch)

Lagekoordinaten (ETRS 89): OW: 4 00 713

NW: 57 99 653

Rohroberkante (ROK): 40,71 m ü. NHN92 Geländeoberkante: 39,77 m ü. NHN92 Sohle bei Ausbau: 19,59 m ü. NHN92

Weitgehend bedeckter Grundwasserleiter

Hauptwert	Bezugszeit-	Grundwasser-	Grundwasser-	Datum
	raum	stand	stand	
		cm u. Gelände	m ü. NHN92	
NW-niedrigster Wert der Reihe	1979/2024	315	36,62	15.08.2022+
MNW-mittlerer niedrigster Wasserstand	1979/2024	248	37,28	
MW-Mittelwert der Reihe	1979/2024	225	37,52	
MHW-mittlerer höchster Wasserstand	1979/2024	205	37,72	
HW-höchster Wert der Reihe	1979/2024	60	39,17	08.04.1981
HM ₁₀₀	n = 46	86	38,91	

(Fehljahre: 1996, 2024)

(Abkürzungen der Wasserstandshauptwerte nach DIN 4049, Teil 1; + Mehrfachauftreten: Datum des ersten Wertes)

aktueller Grundwasserstand am 22.05.2024 221 cm u. Gelände = 37,56 m ü. NHN92

Grundwassermessstelle 3647 1633, Schönefeld

Lagekoordinaten (ETRS 89): OW: 4 00 173

NW: 58 05 919

Rohroberkante (ROK): 42,3 m ü. NHN16 Geländeoberkante: 42 m ü. NHN16 Sohle bei Ausbau: 22,98 m ü. NHN16

Weitgehend bedeckter Grundwasserleiter

Hauptwert	Bezugszeit-	Grundwasser-	Grundwasser-	Datum
	raum	stand	stand	
		cm u. Gelände	m ü. NHN16	
NW-niedrigster Wert der Reihe	1984/2024	681	35,19	22.08.2022
MNW-mittlerer niedrigster Wasserstand	1984/2024	634	35,66	
MW-Mittelwert der Reihe	1984/2024	612	35,88	
MHW-mittlerer höchster Wasserstand	1984/2024	592	36,08	
HW-höchster Wert der Reihe	1984/2024	471	37,29	01.05.1988
HM ₁₀₀	n = 41	86	37,02	

(Fehljahre: 1984, 2009/2010, 2024)

(Abkürzungen der Wasserstandshauptwerte nach DIN 4049, Teil 1; + Mehrfachauftreten: Datum des ersten Wertes)

aktueller Grundwasserstand am 22.04.2024 569 cm u. Gelände = 36,31 m ü. NHN16

Abteilung Wasserwirtschaft 1

Anlage 8 Blatt 3

Über wasserstauenden Schichten, die einer Versickerung von Niederschlags- und Schmelzwasser entgegenwirken, kann es in niederschlagsreichen Zeiten zur Ausbildung von Schichtwasserhorizonten kommen. Schichtwasserhorizonte werden durch das LfU nicht beobachtet.

Erläuterungen/Hinweise

OW / NW Ostwert / Nordwert im Koordinatensystem ETRS 89

NW niedrigster Wasserstand in o. g. Zeitspanne

MNW mittlerer niedrigster Wasserstand (arithmetischer Mittelwert der niedrigsten

Wasserstände je Abflussjahr im angegebenen Zeitabschnitt)

MW arithmetischer Mittelwert der Wasserstände in o. g. Zeitspanne

MHW mittlerer höchster Wasserstand (arithmetischer Mittelwert der höchsten

Wasserstände je Abflussjahr im angegebenen Zeitabschnitt)

HW höchster Wasserstand in o. g. Zeitspanne

HW₁₀₀ Wasserstand, der durchschnittlich einmal alle 100 Jahre erreicht oder

überschritten wird (nach Extremal 3-Verteilung);

n Stichprobenumfang (Anzahl der vollständigen Jahre)

(Bezug: hydrologische Jahre, d.h. Zeitraum vom 01.11. eines Jahres bis zum 31.10. des darauffolgenden Jahres; Bsp.: 01.11.2018 bis 31.10.2019 = hydrologisches Jahr 2019)

Bitte beachten Sie, dass sich die Grundwassermessstelle 36471402 im Bereich ehemaliger Rieselfelder befindet. Die Grundwasserstandsganglinie zeigen zwischen 1980 und 1990 einen deutlichen Rückgang des Grundwasserspiegels, der auf die Stilllegung der Rieselfelder zurückzuführen ist.

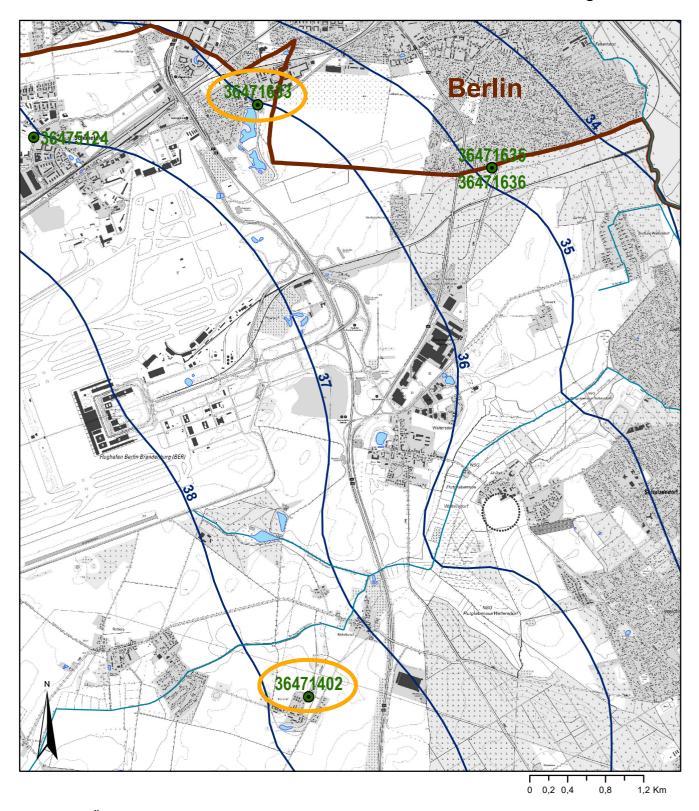
Ich weise ausdrücklich darauf hin, dass sich die angegebenen Grundwasserstandsdaten nur auf den unmittelbaren Bereich der genannten Messstellen beziehen. Die beobachteten Grundwasserstände an den Grundwassermessstellen und deren Schwankungsbeträge können in Eigenverantwortung auf das Bearbeitungsgebiet übertragen werden.

Die in Anlage 1 enthaltenen Grundwassergleichen wurden mit Hilfe von Stichtagsmessungen aus dem Frühjahr 2015 (Stichtag: 15.04.2015) erarbeitet. Sie dienen der großräumigen Veranschaulichung der geohydraulischen Fließprozesse, sowie der hydrodynamischen Situation zum Zeitpunkt der Datenerhebung. In Bereichen ohne Messstellen wurden die Daten interpoliert. Die dargestellten Grundwassergleichen sollten nicht ohne weitergehende Untersuchungen auf andere Zeitpunkte übertragen werden. Zudem dürfen sie auch nicht für die Bestimmung von niedrigsten, mittleren oder höchsten Grundwasserständen oder die kleinräumige Bestimmung von Fließrichtung oder -gefälle an einem Einzelstandort verwendet werden.

Landesamt für Umwelt

Abteilung Wasserwirtschaft 1

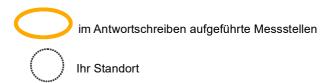
Anlage 8 Blatt 4

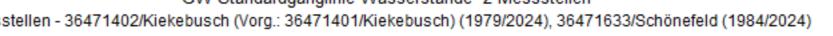

Informationen zu den Landesgrundwassermessstellen finden Sie auch im Internet unter https://apw.brandenburg.de. Unter *Themen/Grundwasser/Messnetze Grundwasserstand* und durch klicken auf die gewünschte Messstelle können die Grundwasserstände (Einzelwerte, Hauptwerte) angesehen und exportiert werden.

Bei Weitergabe oder Veröffentlichung von Daten der Landesmessnetze ist das LfU als Datenquelle zu benennen.

Mit freundlichen Grüßen Im Auftrag

Thomas Claus


Dieses Dokument wurde am 28.05.2024 elektronisch schlussgezeichnet und ist ohne Unterschrift gültig.


Anlage 1 - Übersichtskarte

GWM - aktuell in Beobachtung

Linien gleicher Grundwasserstände in m NHN; Stand: Frühjahr 2015
- für Standortaussagen sind in der Regel zusätzliche Untersuchungen / Messstellen erfordelich

GW Standardganglinie Wasserstände 2 Messstellen

36471400, 36471402, 36471401 36471633

Zentraldienst der Polizei Brandenburg | Am Baruther Tor 20 | 15806 Zossen

RK Geotechnik Querstraße 4 06120 Halle (Saale) Kampfmittelbeseitigungsdienst

Am Baruther Tor 20 15806 Zossen

Bearb.: Herr Jakobi Gesch-Z.:KMBD1.3.10

Telefon:

Fax: 033702 214111

Internet: www.polizei.brandenburg.de domenik.jakobi@polizei.brandenburg.de

Zossen, 11.07.2024

Ortsname: Schulzendorf Straße: Miersdorfer Straße

Flur: 1 Flurstück: 407

3 100, 101, 102, 103, 97

Vorhaben: Schulcampus Schulzendorf

Ihr Zeichen: Hagen Lehmann

Reg. / RPL-Nr.: 2024 1821 0000 (bei Schriftwechsel bitte angeben)

Ihr Schreiben vom: 16.05.2024

Sehr geehrte Damen und Herren,

das von Ihnen beantragte Grundstück/Vorhaben liegt nach derzeitigen Erkenntnissen nicht in einer Kampfmittelverdachtsfläche.

Sollten Sie die Antragstellung aufrecht erhalten, ist eine entsprechende schriftliche Information innerhalb der nächsten 4 Wochen Ihrerseits erforderlich.

Eine Stellungnahme zur Ermittlung der Kampfmittelbelastung eines Grundstücks ist It. Verordnung über die Gebühren für Amtshandlungen im Geschäftsbereich des Ministers des Innern und Kommunales gebührenpflichtig.

Die Datenschutzerklärung finden Sie unter dem folgenden Link https://polizei.brandenburg.de/seite/datenschutzerklaerung-fuer-kampfmittelfr/1295899.

Mit freundlichen Grüßen Im Auftrag

Jakobi

